Siddiqi A.H. Applied functional analysis: numerical methods, wavelet methods, and image processing
Навигация

Выставка новых поступлений  |  Поступления иностранных книг в библиотеки СО РАН : 2003 | 2006 |2008
 
Книжные оглавления
Siddiqi A.H. Applied functional analysis: numerical methods, wavelet methods, and image processing / Siddiqi A.H. - New York: Marcel Dekker, 2004. - 575 p. - (Monographs and textbooks in pure and applied mathematics; vol.258). - ISBN 0-8247-4097-1.
 
ОглавлениеСноска

Preface ....................................................................... v

List of Figures ............................................................ xvii

 1 Metric Spaces and Banach Fixed Point Theorem ............................... 1
   1.1 Introduction ........................................................... 1
   1.2 Banach Contraction Fixed Point Theorem ................................. 1
   1.3 Application of Banach Contraction Mapping Theorem ...................... 7
       1.3.1 Application to Real-valued Equation .............................. 7
       1.3.2 Application to Matrix Equation ................................... 8
       1.3.3 Application to Integral Equation ................................ 10
       1.3.4 Application to Differential Equation ............................ 12
   1.4 Problems .............................................................. 14
References ................................................................... 17

 2 Banach Spaces ............................................................. 19
   2.1 Introduction .......................................................... 19
   2.2 Definitions and Examples of Normed and Banach Spaces .................. 19
       2.2.1 Examples of Normed and Banach Spaces ............................ 21
   2.3 Basic Properties-Closure, Denseness and Separability .................. 25
       2.3.1 Closed, Dense and Separable Sets ................................ 25
       2.3.2 Riesz Theorem and Construction of a New Banach Space ............ 27
       2.3.3 Dimension of Normed Spaces ...................................... 27
       2.3.4 Open and Closed Spheres ......................................... 28
   2.4 Bounded and Unbounded Operators ....................................... 32
       2.4.1 Definitions and Examples ........................................ 32
       2.4.2 Properties of Linear Operators .................................. 40
       2.4.3 Unbounded Operators ............................................. 48
   2.5 Representation of Bounded and Linear Functionals ...................... 50
   2.6 Algebra of Operators .................................................. 51
   2.7 Convex Functional ..................................................... 57
       2.7.1 Convex Sets ..................................................... 58
       2.7.2 Affine Operator ................................................. 60
       2.7.3 Lower Semicontinuous and Upper Semicontinuous Functionals ....... 64
   2.8 Problems .............................................................. 65
       2.8.1 Solved Problems ................................................. 65
       2.8.2 Unsolved Problems ............................................... 76
References ................................................................... 83

 3 Hilbert Space ............................................................. 85
   3.1 Introduction .......................................................... 85
   3.2 Basic Definition and Properties ....................................... 86
       3.2.1 Definitions, Examples and Properties of Inner Product Space ..... 86
       3.2.2 Parallelogram Law and Characterization of Hilbert Space ......... 93
   3.3 Orthogonal Complements and Projection Theorem ......................... 95
       3.3.1 Orthogonal Complements and Projections .......................... 95
   3.4 Orthogonal Projections and Projection Theorem ......................... 99
   3.5 Projection on Convex Sets ............................................ 107
   3.6 Orthonormal Systems and Fourier Expansion ............................ 110
   3.7 Duality and Reflexivity .............................................. 118
       3.7.1 Riesz Representation Theorem ................................... 118
       3.7.2 Reflexivity of Hilbert Spaces .................................. 122
   3.8 Operators in Hilbert Space ........................................... 124
       3.8.1 Adjoint of Bounded Linear Operators on a Hilbert Space ......... 124
       3.8.2 Self-Adjoint, Positive, Normal and Unitary Operators ........... 130
       3.8.3 Adjoint of an Unbounded Linear Operator ........................ 139
   3.9 Bilinear Forms and Lax-Milgram Lemma ................................. 142
       3.9.1 Basic Properties ............................................... 142
   3.10 Problems ............................................................ 151
       3.10.1 Solved Problems ............................................... 151
       3.10.2 Unsolved Problems ............................................. 160
References .................................................................. 165

 4 Fundamental Theorems ..................................................... 167
   4.1 Introduction ......................................................... 167
   4.2 Hahn-Banach Theorem .................................................. 168
       4.2.1 Extension Form of Hahn-Banach Theorem .......................... 168
       4.2.2 Extension Form of the Hahn-Banach Theorem ...................... 173
   4.3 Topologies on Normed Spaces .......................................... 178
       4.3.1 Strong and Weak Topologies ..................................... 178
   4.4 Weak Convergence ..................................................... 179
       4.4.1 Weak Convergence in Banach Spaces .............................. 179
       4.4.2 Weak Convergence in Hilbert Spaces ............................. 183
   4.5 Banach-Alaoglu Theorem ............................................... 185
   4.6 Principle of Uniform Boundedness and Its Applications ................ 187
       4.6.1 Principle of Uniform Boundedness ............................... 187
   4.7 Open Mapping and Closed Graph Theorems ............................... 189
       4.7.1 Graph of a Linear Operator and Closedness Property ............. 189
       4.7.2 Open Mapping Theorem ........................................... 192
       4.7.3 The Closed-Graph Theorem ....................................... 193
   4.8 Problems ............................................................. 194
       4.8.1 Solved Problems ................................................ 194
       4.8.2 Unsolved Problems .............................................. 196
References .................................................................. 199

 5 Differential and Integral Calculus in Banach Spaces ...................... 201
   5.1 Introduction ......................................................... 201
   5.2 The Gateaux and Frechet Derivatives .................................. 201
       5.2.1 The Gateaux Derivative ......................................... 201
       5.2.2 The Frechet Derivative ......................................... 206
   5.3 Generalized Gradient (Subdifferential) ............................... 215
   5.4 Some Basic Results from Distribution Theory and Sobolev Spaces ....... 217
       5.4.1 Distributions .................................................. 218
       5.4.2 Sobolev Space .................................................. 232
       5.4.3 The Sobolev Embedding Theorems ................................. 238
   5.5 Integration in Banach Spaces ......................................... 241
   5.6 Problems ............................................................. 245
       5.6.1 Solved Problems ................................................ 245
   5.7 Unsolved Problems .................................................... 250
References .................................................................. 255

 6 Optimization Problems .................................................... 257
   6.1 Introduction ......................................................... 257
   6.2 General Results on Optimization ...................................... 257
   6.3 Special Classes of Optimization Problems ............................. 261
       6.3.1 Convex, Quadratic and Linear Programming ....................... 261
       6.3.2 Calculus of Variations and Euler-Lagrange Equation ............. 262
       6.3.3 Minimization of Energy Functional (Quadratic Functional) ....... 263
   6.4 Algorithmic Optimization ............................................. 265
       6.4.1 Newton Algorithm and Its Generalization ........................ 265
       6.4.2 Conjugate Gradient Method ...................................... 275
   6.5 Problems ............................................................. 277
References .................................................................. 281

 7 Operator Equations and Variational Methods ............................... 283
   7.1 Introduction ......................................................... 283
   7.2 Boundary Value Problems .............................................. 283
   7.3 Operator Equations and Solvability Conditions ........................ 287
       7.3.1 Equivalence of Operator Equation and Minimization Problem ...... 287
       7.3.2 Solvability Conditions ......................................... 289
       7.3.3 Existence Theorem for Nonlinear Operators ...................... 292
   7.4 Existence of Solutions of Dirichlet and Neumann Boundary Value
       Problems ............................................................. 293
   7.5 Approximation Method for Operator Equations .......................... 297
       7.5.1 Galerkin Method ................................................ 297
       7.5.2 Rayleigh-Ritz-Galerkin Method .................................. 300
   7.6 Eigenvalue Problems .................................................. 301
       7.6.1 Eigenvalue of Bilinear Form .................................... 301
       7.6.2 Existence and Uniqueness ....................................... 302
   7.7 Boundary Value Problems in Science and Technology .................... 303
   7.8 Problems ............................................................. 309
References .................................................................. 313

 8 Finite Element and Boundary Element Methods .............................. 315
   8.1 Introduction ......................................................... 315
   8.2 Finite Element Method ................................................ 318
       8.2.1 Abstract Problem and Error Estimation .......................... 318
       8.2.2 Internal Approximation of H1 (Ω) ............................... 325
       8.2.3 Finite Elements ................................................ 327
   8.3 Applications of the Finite Method in Solving Boundary Value
       Problems ............................................................. 332
   8.4 Basic Ingredients of Boundary Element Method ......................... 338
       8.4.1 Weighted Residuals Method ...................................... 338
       8.4.2 Inverse Problem and Boundary Solutions ......................... 340
       8.4.3 Boundary Element Method ........................................ 341
   8.5 Problems ............................................................. 349
References .................................................................. 353

 9 Variational Inequalities and Applications ................................ 359
   9.1 Motivation and Historical Remarks .................................... 359
       9.1.1 Contact Problem (Signorini Problem) ............................ 360
       9.1.2 Variational Inequalities in Social, Financial and Management
             Sciences ....................................................... 361
   9.2 Variational Inequalities and Their Relationship with Other
       Problems ............................................................. 362
       9.2.1 Classes of Variational Inequalities ............................ 362
       9.2.2 Formulation of a Few Problems in Terms of Variational
             Inequalities ................................................... 364
  9.3 Elliptic Variational Inequalities ..................................... 370
       9.3.1 Lions-Stampacchia Theorem ...................................... 371
       9.3.2 Variational Inequalities for Monotone Operators ................ 373
   9.4 Finite Element Methods for Variational Inequalities .................. 380
       9.4.1 Convergence and Error Estimation ............................... 380
       9.4.2 Error Estimation in Concrete Cases ............................. 384
   9.5 Evolution Variational Inequalities and Parallel Algorithms ........... 386
       9.5.1 Solution of Evolution Variational Inequalities ................. 386
       9.5.2 Decomposition Method and Parallel Algorithms ................... 389
   9.6 Obstacle Problem ..................................................... 396
       9.6.1 Obstacle Problem ............................................... 396
       9.6.2 Membrane Problem ............................................... 398
   9.7 Problems ............................................................. 400
References .................................................................. 403

10 Wavelet Theory ........................................................... 407
   10.1 Introduction ........................................................ 407
   10.2 Continuous and Discrete Wavelet Transforms .......................... 409
        10.2.1 Continuous Wavelet Transforms ................................ 409
        10.2.2 Discrete Wavelet Transform and Wavelet Series ................ 420
   10.3 Multiresolution Analysis, Wavelets Decomposition and
        Reconstruction ...................................................... 426
        10.3.1 Multiresolution Analysis (MRA) ............................... 426
        10.3.2 Decomposition and Reconstruction Algorithms .................. 430
        10.3.3 Connection with Signal Processing ............................ 434
        10.3.4 The Fast Wavelet Transform Algorithm ......................... 437
   10.4 Wavelets and Smoothness of Functions ................................ 438
        10.4.1 Lipschitz Class and Wavelets ................................. 438
        10.4.2 Approximation and Detail Operators ........................... 442
        10.4.3 Scaling and Wavelet Filters .................................. 449
        10.4.4 Approximation by MRA Associated Projections .................. 457
   10.5 Compactly Supported Wavelets ........................................ 460
        10.5.1 Daubechies Wavelets .......................................... 460
        10.5.2 Approximation by Family of Daubechies Wavelets ............... 466
   10.6 Wavelet Packets ..................................................... 476
   10.7 Problems ............................................................ 477
References .................................................................. 481

11 Wavelet Method for Partial Differential Equations and Image Processing ... 485
   11.1 Introduction ........................................................ 485
   11.2 Wavelet Methods in Partial Differential and Integral Equations ...... 486
        11.2.1 Introduction ................................................. 486
        11.2.2 General Procedure ............................................ 487
        11.2.3 Miscellaneous Examples ....................................... 491
        11.2.4 Error Estimation Using Wavelet Basis ......................... 497
   11.3 Introduction to Signal and Image Processing ......................... 499
   11.4 Representation of Signals by Frames ................................. 501
        11.4.1 Functional Analytic Formulation .............................. 501
        11.4.2 Iterative Reconstruction ..................................... 502
   11.5 Noise Removal from Signals .......................................... 505
        11.5.1 Introduction ................................................. 505
        11.5.2 Model and Algorithm .......................................... 506
   11.6 Wavelet Methods for Image Processing ................................ 510
        11.6.1 Besov Space .................................................. 511
        11.6.2 Linear and Nonlinear Image Compression ....................... 512
   11.7 Problems ............................................................ 515
References .................................................................. 519

Appendices .................................................................. 523

A Set Theoretic Concepts .................................................... 523

B Topological Concepts ...................................................... 529

C Elements of Metric Spaces ................................................. 533

D Notations and Definitions of Concrete Spaces .............................. 539

E Vector Spaces ............................................................. 551

F Fourier Analysis .......................................................... 555

References .................................................................. 563

Symbols and Abbreviations ................................................... 565

Index ....................................................................... 567


Вверх Siddiqi A.H. Applied functional analysis: numerical methods, wavelet methods, and image processing / Siddiqi A.H. - New York: Marcel Dekker, 2004. - 575 p. - (Monographs and textbooks in pure and applied mathematics; vol.258). - ISBN 0-8247-4097-1.

Сигла: 014По алфавиту | По темам ||| Математика
[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:51:48 2019. Размер: 22,443 bytes.
Посещение N 4223 с 24.09.2007