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Stability of Finite-Amplitude Autooscillations in Poiseuille Flow 

N.N.YANENKO , B.YU.SCOBELEV, A.ZHARILKASINOV 

Institute of Theoretical and Applied Mechanics USSR Academy of 
Sciences, Novosibirsk 630090 

The conditions of existence of analytical invariant manifolds for Navier-Stokes equations 

are derived. A method of constructing the invariant manifolds in specific problems is 

suggested. The bifurcations of subcritical autooscillating regimes in a plane Poiseuille 

flow are studied. 

Consider the flow of a viscous incompressible fluid in a bounded domain Ω  with piecewise-

smooth boundary . The flow velocity V  and pressure are determined by a system of Ω∂ ),( tx ),( txp
Navier-Stokes equations 

(1)  0V ; =⋅∇+∇+−∇=∇⋅+
∂
∂ fvvpVV

t
V

Assume that at the given boundary conditions there exists a stationary solution of the 

system (1) (V )and we shall search for the solution of the form 00 , p
),,()(),( 0 txuxVtxV +=      ),()(),( 0 txqxptxp ==

Introduce the Hilbert spaces 

H = {uε [L2( )]Ω 3 ; ; u "n/ = 0} 0=⋅∇ u Ω∂

K = { uε [H1( )]Ω 3 ; ; u"n / = 0} 0=⋅∇ u Ω∂

D = { uε [H2( )]Ω 3 ; ; u"n / = 0} 0=⋅∇ u Ω∂
where Hs(  is the Sobolev's space. Ω
Then (see, f.e. [1]) a problem of finding (u,q) reduces to a differential equation with 
unbounded operators in the Hilbert space H 

);( uVNuL
dt
du

v +−=                              (2) 

where Lv is the linear operator with the domain D 
Lv = П (v  )00 VuuVu ∇⋅−∇⋅−∆

(П is the orthogonal projector on H in  [L2( )]Ω 3.   

The nonlinear operator N has the domain K and in the present 
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case does not depend on the parameter v 
N (u)= - П u " ∇  u

Consider a general case of Eq.(2) in some Hilbert space. Assume that the linear Lv  

and nonlinear N operators are closed and satisfy the following conditions: 
I.  N (V;0)= 0 , vε Rm ,  Nu (v;0) = 0. 
II. A domain of the operator Lv –D(L) does not depend on v. 
III. The operator Lv is m-sectorial. Hence it follows that (-Lv) is the generating 

operator of the analytical semigroup and that there exists the operator 

 (-Lv – a v) α ,  0 < α <1, D[(-Lv – a v) α]  D(L) ⊃
(a v is the vertex of sector inside which the eigenvalues of the operator Lv lie). 

IV. The operator N(v, x) has a domain D(N)  D(L) independent of v and D(L) is the mapping of ⊃
D(L) in D(-Lv – a v) at some α. This mapping possesses the Lipschitz-continuous 
first derivative. 

V.   A spectrum of the (-Lv) - δ  permits the partition δ = δ1U δ2 

 where δ1 is a bounded portion of δ. 
VI. æv >0 , æv >qv  

where     æv = -supRe ę ,  qv = - inf Re ę 
ęεδ2                           ęεδ1 

We shall study classical solutions of the initial problem for Eq.(2) 

u (0) = u0  ε D(L)  ;   u   ε C 0(0,∞ ; D(L)  C I
1∞ ; H)         (3) 

By virtue of the condition V there exists the decomposition of the operator L v, with  
respect to a direct sum of the orthogonal subspaces H =Pv H (I - P⊕ v) H where Pv is such  

a projector that the spectrum of the operator (-Pv LV ) equals δ1. Any vector u   ε H can be  

represented in the form of sum u = y + z, y   ε Pv H, zε (I - Pv) H . In what follows a notion of  
invariant manifold vail be of importance. We shall call an invariant manifold of Eq.(2) a  

set M ⊂ H of the form 

M = { )( }~, yzy  ,  y   ε Pv D(L), )(~ yz ε (I - Pv) D(L) 
such that if u0 ε M, then the whole trajectory u (t), 0 ≤  t <∞  

belongs to M. 
Then there holds the following 

Theorem 1.  Let the conditions I - VI be satisfied. Then there exists such a number β > 0  
 that the following statements hold: 

1. Eq.(2) has an invariant manifold 
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M = { })(~, yzy , )0(~z = 0 , ρ≤dy  

βρρ α <+ /1 (æv - qv) 

The mapping z~  ; Pv D(L) →  (I - Pv) D(L) satisfies the Lipschitz condition and  
ρ≤dz~
 

( )xLxx vd +=  

2. Any global solution of the problem (2),(3) with the property 

ρ≤dv tuP )(    , tε [ 0,  ) ∞

,)(~)()())((~
00

t
ddvv zyzconsttuPItuPz γ−−≤−− l    t →  ∞

is attracted by the manifold M, i.e. there may be found such a number γ > 0 that 

 
where    

0y = Pvu0 , z0 =  0)( uPI v−
From the theorem I it follows that the study of trajectories of the evolutionary equation (2)  

with unbounded operator may be reduced to the analysis of solutions of the evolutionary equations 

with bounded operators L1= Pv Lv and N1 = Pv N. If the spectrum δ1 consists of a finite number  

of isolated eigenvalues, then the problem reduces to the study of the finite-dimensional dynamic  

system. For finding the manifold of M we shall formulate the additional conditions on the 

operators Lv and N. 
VII. The nonlinear operator N (v; x ) is an analytical operator acting from {v; D (N) in H. 
VIII. The vector Lv x depends analytically on v at any x  ε D(L) 
IX. The spectrum δ1 consists of n pairs of simple isolated eigenvalues { λλ ~,i } 

)()()( viwvv iii += γλ  , wi(v)> 0 ,   i = 1,2, …, n 
If at some natural k > 0  there holds the equality 

k w1(v0) = (v
0iw 0) ,   v0  ε Rm 

then   (viγ 0) ≠ 0    
0

Denote by ϕ i the eigenfunctions of the operator (-Lv) and by Ψi the eigenfunctions of  

the conjugate operator (-L *
v ). Let be a projector on the eigenspace (-L)(ip v) answering  
,a pair of eigenvalues ii λλ . Then  

iiii
i yxxxP ≡+= ϕψψ ),(,()( ,   (ϕI , ) = 1 iψ

The equation (2) is equivalent to the following system 
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)....,( 21
)()( zyyyvNPyLP

dt
dy

n
i

iv
ii +++++−= ;  i = 1, 2, …,n  

 

)...;( 21 zyyyvQNzQL
dt
dz

nv +++++= ;  z ε QD(L)        (4) 

Q = I −  ∑
=

n

i

iP
1

Introduce in the subspaces )(iP H the systems of polar coordinates and we shall search for the 
solutions of Eq.(4) in the form  

),...;,...(~)( 11 nnii
ii

ii rryrRy θθϕθ += ll  
π2

∫ =− θ θψ
0

0),~( iii
ii dyl  (5)  

nrrzz ,...,(~
1=  ;  ),...,1 nθθ

Substituting (5) into (4), we can derive a finite-dimensional autonomous system of  

equations for ri, θi  
 

i
i

i
i rb

dt
dr )( )(+= γ   )(i

i
i cw

dt
d +=θ

 ; i = 1, 2, …n      (6) 

b(i) = R l<<N, ψi >> , c(i) = Im<< N, ψi >> = ∫ −
π

θ θψ
π

2

0

),(
2

1
ii

ii

i
dN

r
l  

In what follows we shall construct the invariant manifold from integral curves of Eq.(2).  

For this purpose we make use of the first integrals of the system (6) which establish the  

relationship between two points of the integral curve of this system  

(r(1), θ(1)) , (r(2), θ(2)) 
 
ri

(2)  = (θir̂
ˆ

1
(2); r1

(1), …, rn
(1), θ1

(1), …,θn
(1) ) ,  i = 1, 2, …, n  (7) 

θi
(2) = (θiθ 1

(2); r1
(1), …, rn

(1), θ1
(1), …,θn

(1) ) ,  i =  2, …, n 

If  w1+ c(1) ≠ 0 ,  then the  functions  ,  are found  from equations ir̂ iθ̂

)1(
1

)(

1

ˆˆ
cw

rb
d

rd i
i

ii

+
+= γ

θ
  ;   i = 1, 2, …, n    

=
1

ˆ

θ
θ

d
d i  )1(

1

)(

cw
cw i

i

+
+

  ;   i =  2, …, n     (8) 

The equation 

)1(
1

1 cw
dt

d +=θ
                                                                          (9) 

deter ines the dependence of solution of the system (8) on time. When deriving the equations  m

for z~  and  we shall assume that in formulas (7) the point ( r  y~ (2) , θ  (2)) is fixed and  the 
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point (  r (1) , θ  ( 2)) changes along the Integral  curve.  As a result we obtain 
lRNPycyLPyw ii

iv
i i −+

∂
∂

−=+
∂
∂ )(

1

)1(

1
1

~~~
)(

θθ
(<<NψI>>ri eiθϕ I) 

 

QNzczQLzw i
iv

i +
∂
∂−=+

∂
∂

1

)1(

1
1

~~~

θθ
            (10) 

 
Theorem 2. Let the conditions I-IX be satisfied. Then there may be found such  

ρ > 0  that at |r | < ρ0 ( |r | = r1 + … + rn )the equation (1) has a unique 2n-dimens±onal invariant  

manifold M2n 

M2n =  {R ),;(~)e((),...,;()e( 111
1 θϕθϕ θθ ryrRryr nn

i
n

i n ++ ll   );(~ θrz } 
~

The functions );(~ θrz , satisfy the equations (10), analytically depend on r);( θryn i  (i = 1, …, n)  
and on the parameter v and are continuously differentiable 2π - periodical functions of θ i    (i = 1, …, n).  
The phase trajectories of Eq.(2) on the manifold are determined by the system (8) where   

b (i )   (r ; θI ,… θi- 1, θ i+ 1, θ n ) , 
c(i) (r ; θI ,… θi- 1, θi+ 1, θn are analytical functions of r, and v  and are continuously 

differentiable, 2π -periodical functions of θ i. There may be found such βn > 0  
that at α

1
rr + < βn(æv- qv) the manifold M2n is attracting. From the Theorem 2  

it follows that the solution of Eq,(2) on the manifold M2n has the form 

u = ;   ∑
=

+
n

i
i

i
i zrR i

1

~~)e( ϕθl z
~~ = ∑ ;  

=

+
n

i
i zy

1

~~ z
~~  =   (11) ∑

∞

=2iSj

S
S rz

1
1

SS rr = ….  nS
nr

Assuming also 

b(i) 
=  ,   c∑

∞

=1

)(

iSj

Si
s rb (i) 

=       (12) ∑
∞

=1

)(

iSj

Si
s rc

we obtain a recurrent system of linear equations for zS 
 

S
Spk

ki
ii

s

n

i

i
sSv

S NzpccbRzLzw i
ii

+
∂
∂−+−=+

∂
∂ ∑∑

=+= 1

)1()(

1

)(

1
1 e)(

θ
ϕ

θ
θl    (13) 

The periodical functions b , c (  are unambiguously determined by the condition )(i
s

)i
S

 

∫ =−π θ θψ
2

0
0),(e iis

i dzi
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It is possible to show that for Navier-Stokes equations in a bounded domain the 

conditions I-VIII are satisfied, for α  in the condition IV the estimate α < ¼ is 

valid. In the case of spatial periodicity of the flow we can take a periodicity 

cell as Ω . The implementation of the condition IX depends on a specific problem. 

For example, it was shown in [2] that for a plane Poiseuille flow the neutral 

eigenvalue is almost everywhere simple on the neutral curve. 
Consider the two-dimensional invariant manifold for disturbances of a plane  
Poiseuille flow. Take a pair of the first eigenvalues of the corresponding Orr-Sommerfeld  

problem (λ1 , 1λ ) (the ordering is carried out with respect to γi ) as δ1. It is easy  

to show that the coefficients in expansions (12) are numbers and different from  
zero are only the coefficients with even indices. For numerical computations it  
is convenient to go over to the equation for stream function. Then the system (13) 
reduces to a system, of boundary-value problems for ordinary differential equations  

for the determination of harmonics of functions zs - zsk, Sk ≤ . The fixed points of the 
equation for the phase trajectories 

)(
)((

1

1

rcw
rrb

d
dr

+
+= γ

θ
 

determine the amplitudes of limiting cycles. It is known that for the Poiseuille  
flow there takes place a subcritical bifurcation. In [3,4] it was shown on the  

basis of the asymptotic method that the amplitude curve in the (r , R) plane,  
R being the Reynolds number, has a special point - a turning point. Consider a 
subcritical domain of Reynolds numbers and disturbance wavenumber α values.  
Introduce the notations 

v = (α , R ) ;  r2  = p ;  ę 0 = −  γ ;  ę  = b2e ( l  = 2m −1);   ę  = − bl 2 l  (  = 2m),m = 1,2,… l

Write down the equation for amplitudes of limiting cycles in the form 

− ę0(v) +f1 (v, p) p − f2 (v, p) p2 = 0        (14) 

Where  

f1 (v, p) = ę1(v) + ę∑
∞

=1k
2k+1(v)p2k ;  f2 (v, p) = ę2(v) + ę∑

∞

=1k
2k+2(v) p2k 

From (14) we derive equations for two pieces of the amplitude surface 
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),(2
),(),(

2

2
1

1

pvf
pvФpvfp +=        (15) 

),(2
),(),(

2

2
1

1

pvf
pvФpvfp −=  ;  Ф = − ę2

1f 0  f2    (16) 

 

At the fixed α = α0  the amplitude curve has a turning point at R = RH where  

Ф = 0. At small p 
f1 ≈ b2 (α, R), f2 ≈ −b4 (α, R),  Ф  b − 4≈ 2

2 γ 1 b4     
 

In the paper the numerical calculation of coefficients b2, b4 and approximate 

values of RH  is carried out. Table I represents the results rH  is the 

critical value of the amplitude, R0 is the linear neutral value of R. 
Table I 

 

α 1.10 1.08 1.06 1.04 1.02 1.0 0.98 
RH 4960 4896 4905 4968 5068 5197 5301 
rH102 0.63 0.71 0.79 0.89 1.03 1.28 1.84 
R0 8417 6359 5945 5849 5774 5880 5898 
 
 

The computations have shown that at 0.94 ≤ α 0.96 the coefficient b≤ 4 changes  
its sign in the vicinity of the turning point. In this connection on the 
basis of equations (15),(16) we can show that the amplitude curve may  
have a second turning point. This possibility is depicted in Fig.1 by  

dotted line. Then in the (α, R) plane there may exist a point where two 
turning points mix together. The cusp of the amplitude surface depicted  
in Fig.2 corresponds to this point.  
The calculation of four-dimensional invariant manifold with the accuracy  

up to the second order term with respect to r1. r2, has been carried out.  
The first eigenvalues for odd eigenvalues of Orr-Sommerfeld equations were 

taken as the second pair of eigenvalues for δ 1. Numerical computations of 
Eq.(8) have shown that at α  = 1, R = 5000 and  r1 < 0.9 ·10-2 the two-
dimensional manifold is stable with respect to four-dimensional  
disturbances. In calculations the Poiseuille flow velocity profile was taken 
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Fig.1. r1, r3   are unstable and 

r2 stable limit cycles Fig.2 
 

in the form V0 = y(2 − y). The eigenfunctions of the Orr-Sommerfeld equation  
ϕ ( y)  were normalized by conditions ϕ ( 1) = 1  for even functions and ϕ ′ ( 1) = 1  
for odd ones. The integration of equations was carried out by the  
orthogonalization method. Each equation was integrated on its nonuniform  
mesh which condensed in a region of critical layer and near wall. 
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