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Stability of Finite-Amplitude Autooscillations in Poiseuille Flow
[N YANENKO], B. YU. SCOBELEV, A ZHARI LKASI NOV

Institute of Theoretical and Applied Mechani cs USSR Acadeny of
Sci ences, Novosi bi rsk 630090

The conditions of existence of analytical invariant manifolds for Navier-Stokes equations
are derived. A nmethod of constructing the invariant nanifolds in specific problens is
suggest ed. The bifurcations of subcritical autooscillating regines in a plane Poiseuille

flow are studied.
Consider the flow of a viscous inconpressible fluid in a bounded domain Q with piecew se-
snmoot h boundary 0Q. The flow velocity V(x,t) and pressure p(x,t)are deternmned by a system of
Navi er - St okes equati ons

ov

E+VDDV:—Dp+va+f;DDJ:0 (1

Assume that at the given boundary conditions there exists a stationary solution of the
system (1) (V,,p,)and we shall search for the solution of the form

V(x,t) =Vy(x)+u(x,t), p(x,t)=py(x)=q(x,t)
Introduce the Hlbert spaces

H={ue[LA(Q)’; Dw=0;u-n/60= 0}

K={ug[H'(Q); 0w=0;un/po= 0}

D= {uc[H(Q)); O@=0;un/p0= 0}
where H'(Q is the Sobolev's space.

Then (see, f.e. [1]) a problemof finding (u,q) reduces to a differential equation with
unbounded operators in the Hlbert space H

% =—Lu+NV;u) (9))

where L, is the linear operator with the domain D
Ly = (v Du =V, [Mu —u V,)
(ITis the orthogonal projector on Hin [LaQ)].
The nonlinear operator N has the domain K and in the present
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case does not depend on the paraneter v
N (w=-Iu -Ou
Consi der a general case of Eg.(2) in sone Hilbert space. Assunme that the linear L,
and nonlinear N operators are closed and satisfy the follow ng conditions:
l. NW:0=0, veR", N, (v,0)=0.
. A domain of the operator L, -D(L)does not depend on v.
[11. The operator L, is msectorial. Hence it follows that (-L,) is the generating
operator of the analytical semgroup and that there exists the operator
('Lv - av) cx, 0<G<I’D[('Lv - av) o[]D D(L)
(a,is the vertex of sector inside which the eigenvalues of the operator L, lie).
V. The operator N(v, x) has a domain D(N) O D(L)independent of vand D(L)is the mapping of
D(L)in D(-L, — a,)at sone a. This mappi ng possesses the Lipschitz-continuous
first derivative.
V. A spectrumof the (-L,) - O pernmits the partition 0=9,U O

where & is a bounded portion of 4

M. a, >0 , ae,>q,
wher e &e,=-supRee, q,=-infRee
eEO, eE€0;
Ve shal |l study classical solutions of the initial problemfor Ej.(2)
u@© = we D) ; u&eCY0,o; DIL)N C'eo; H) 3)

By virtue of the condition V there exists the deconposition of the operator L,, with
respect to a direct sumof the orthogonal subspaces H=P,HO(l - P,)H where P, is such
a projector that the spectrumof the operator (-P, Ly)equals O;. Any vector u &H can be
represented in the formof sumu=y+z y&P,H, z6E(I - P)H. In vhat follows a notion of
invariant manifold vail be of inportance. V& shall call an invariant nanifold of Eg.(2) a
set MOH of the form

M={yz(»}, yeP,D(L), Z(y)e(l - P)D(L)

such that if uy&M, then the whole trajectory u(?), 0< ¢ <o

bel ongs to M.
Then there hol ds the fol |l ow ng
Theorem 1. Let the conditions | - M be satisfied. Then there exists such a nunber 3> 0

that the followng statenents hol d:

1. E.(2) has an invariant nanifol d
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M={pz0}, 0= 0,
p+p'<p(2e-q)
The mapping z ; P, D(L) - (I - P)D(L) satisfies the Lipschitz condition and "E"d =P
(el =[] + 25Dy
2. Any gl obal solution of the problem (2),(3) with the property
[Pu@l,sp  t€[0, *)
is attracted by the manifold M, i.e. there may be found such a nunber ) >0 that
|F(Pu(e)) = (I = Pyu(@)|, < const|2(yy) =z ¢, ¢ - @

|y"d sp

wher e

yo=Pyuo , zo = (I=P)u,
Fromthe theoreml| it follows that the study of trajectories of the evol utionary equation (2)
w th unbounded operator may be reduced to the anal ysis of solutions of the evol utionary equations
w th bounded operators L;= P,L, and N; = P,N. |If the spectrum J; consists of a finite nunber
of isolated eigenval ues, then the probl emreduces to the study of the finite-dinensional dynamc
system For finding the nanifold of M we shall fornulate the additional conditions on the
operators L, and V.
M. The nonlinear operator N (v, x) is an analytical operator acting from {v; D(N)in H.
MII. The vector L, x depends analytically on v at any x&D(L)
IX The spectrum O; consists of n pairs of sinple isolated eigenval ues {/li,/T}

AWM=y +iw(v) , w(>0, i=12 ..,n
If at sonme natural £> 0 there holds the equality
le(Vo) =w. (Vo) , V()ng
t hen Vi (vo) #0

the conjugate operator (-L)). Let p“be a projector on the ei genspace (-L,) answering

a pair of eigenvalues A A;. Then

POx =y, + @)=y, (B ¢)=1

The equation (2) is equivalent to the follow ng system
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P —POLy, +PONw,y, +y, +.¥y, +2); i=1,2, ...n

dt
%=Qva+QN(V;J’1+J’2 +.+y,+z2); z€OD(L) “)
Q=1-3 P

i=1

Introduce in the subspaces PY Hthe systens of polar coordinates and we shall search for the

solutions of Eq.(4) inthe form
Vi :Rf(rifia¢l-)+§i(r1,...rn;6’1,...6’n)

2
[ Giwas, =0 5)
0

z=Z(Hyn?y 3 6,..,0,)
Substituting (5) into (4), we can derive a finite-dinensi onal autononous syst em of
equations for r, &
dr, : do. ; .
i +bDy Zhz=w+e® o i=1,2 .1 6
L T Wb == e (6)
) ) 1 2m
b(l) :R£<<]V’ ¢Ii>> , c(l) :]m<< N l//i>> = Z_J'f—ia'(N’wi)dei
Vi
Lo

In what follows we shall construct the invariant nanifold fromintegral curves of Ej.(2).
For this purpose we nake use of the first integrals of the system(6) which establish the
rel ationship between two points of the integral curve of this system

(r(l)’ 91)) , (,,(2), 92))

ri(z) = ;}(61(2)9 rl(l)a ---arn(l)a ﬂ(l)a -"agn(l))a i= la 23 e 1 (7)
82 =660, .0 80 . 80Y), i=2 ..,n

I f w1+c(1)¢0,then the functions rf,ei are found fromequations
di, _ v, +b"7,

6, w +c P=L2
dé’i w, +c .
—c 7 i=2,...,n 8)
dé, w +c
The equati on
a6, _ )
M )

det ermines the dependence of solution of the system(8) on tine. Wen deriving the equations
for Z and 7 we shall assune that in formilas (7) the point (r(z) , 49(2>) is fixed and the
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poi nt (r(l) , 9(2)) changes along the Integral curve. As aresult we obtain

F s ~ o ‘
Wi ai +POL,y; ==V ﬁ +PON =Rl (S<N>>re'% )

91 1
0z, 0z,
L +OL z == (@) L +ON 10
Wi 601 Q vZi 4 691 Q ( )

Theorem 2. Let the conditions |-1X be satisfied. Then there may be found such
P>0 that at [r|] <o ( || =n + ...+ 1, )the equation (1) has a uni que 2n-di nenstonal invariant
nani fol d M,

Mo= {R ((rie" % §)) + 3,(30),... RU(r, " §,) + 7, (r36), Z(36) }

The functions 230 Ya(i& satisfy the equations (10), anal ytically depend on ri(i=1,...,n)

and on the paraneter vand are continuously differentiabl e 277 periodical functions of & (i=1,...,n).
The phase trajectories of Eg.(2) on the nanifol d are determned by the system(8) where

b(l) (r; 6;-" H—]) 6i+], 61’!),
(’)(r G,... 8.1, 8+, 6, are anal ytical functions of r, and v and are continuously
di fferentiabl e 27T-periodi cal functions of &, There may be found such £, > 0

that at |r|+|r| a< [y qy)the manifold M, is attracting. Fromthe Theorem 2
it follows that the solution of Eqg,(2) on the manifold M, has the form

n n 00
u= Y RUePP)+Z; Z= Y 5475 Z = Y zg° (11)
i=l i=1 iSj=2
}"S—}"ISI S

Assum ng al so
(l)_ zb(l) S , (l)_ z (l) S (12)
iSj=1 iSj=1

we obtain a recurrent systemof |inear equations for zg

S +Lzg= —RZZ(b(’)+c(’))e’9¢ > e aZp +NS (13)

k+p=S

69

The periodical functions A, ¢ are unanbiguously determined by the condition

s 2

27 .y
[ e Gowag =0



204

It is possible to show that for Navier-Stokes equations in a bounded domain the
conditions I-VIIl are satisfied, for @in the condition IVthe estimate @ < % is
valid. In the case of spatial periodicity of the flowwe can take a periodicity
cell as 2. The inplenentation of the condition I X depends on a specific problem
For exanple, it was shown in [2] that for a plane Poiseuille flow the neutra

ei genval ue i s al most everywhere sinple on the neutral curve.
Consi der the two-di mensional invariant nanifold for di sturbances of a plane
Poi seuille flow Take a pair of the first eigenval ues of the corresponding Or-Somerfeld

probl em (A;, A,) (the ordering is carried out with respect to )f) as J;. It is easy

to show that the coefficients in expansions (12) are nunbers and different from
zero are only the coefficients with even indices. For nunerical conputations it
is convenient to go over to the equation for streamfunction. Then the system (13)
reduces to a system of boundary-val ue problens for ordinary differential equations

for the determ nation of harnonics of functions zg- Z¢J|kh;S. The fixed points of the
equation for the phase trajectories

dr _(y, +b(r)r

e wy +c(r)
determ ne the anplitudes of limting cycles. It is known that for the Poiseuille
flow there takes place a subcritical bifurcation. In [3,4] it was shown on the

basis of the asynptotic method that the anplitude curve in the (»,R) plane
R being the Reynol ds nunber, has a special point - a turning point. Consider a

subcritical domain of Reynolds nunbers and di sturbance wavenunber & val ues.
I ntroduce the notations

vzuLR);pr;eoz—y;e=b%(€=bnﬂﬁ er=-byy (0 =2m)m=1,2,...
Wite down the equation for anplitudes of limting cycles in the form

- e i (v, p) p-fr (v, p) P> =0 (14)
Wher e
L@ p=aM+ > ex1(Mp™; A p) =M+ > ewav) p™*

From (14) we derive equations for two pieces of the anplitude surface



205

Y
_NHp)+ P2, p) 15
i 2£,(v, p) 4>
_ah
=fl(v:p) d) (V:p) . @: 2_ 16
d 2600 izl (16)

At the fixed a= a, the anplitude curve has a turning point at R =Ry where
®@=0. At small p

ﬁzbz(a,R), D = b22—4y1b4

fo=-bs(a, R),
In the paper the nunerical calculation of coefficients b,, by and approxi mate
values of Ry is carried out. Table |I represents the results ry is the
critical value of the amplitude, Ry, is the linear neutral value of R.

Tabl e |
a 1.10 1.08 1.06 1.04 1.02 1.0 0.98
Ry 4960 4896 4905 4968 5068 5197 5301
il 07 0.63 0.71 0.79 0.89 1.03 1.28 1.84
Ro 8417 6359 5945 5849 5774 5880 5898

The conputati ons have shown that at 0.94 <a<0.96 the coefficient by changes
its signin the vicinity of the turning point. In this connection on the
basi s of equations (15),(16) we can show that the anplitude curve may

have a second turning point. This possibility is depicted in Fig.1l by
dotted line. Then in the (a, R) plane there may exi st a point where two
turning points mx together. The cusp of the anplitude surface depicted

in Fig.2 corresponds to this point.

The cal cul ati on of four-dinensional invariant manifold with the accuracy
up to the second order termwith respect to r;. r, has been carried out.
The first eigenval ues for odd ei genval ues of Or-Somerfeld equations were
taken as the second pair of eigenvalues for O,. Numerical conputations of
Eq. (8) have shown that at @ =1, R = 5000 and r;< 0.9:10°2 the two-
dinmensional manifold is stable with respect to four-dinensiona

di sturbances. In calculations the Poiseuille flow velocity profile was taken
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Fig.1l. r, r3 are unstable and
r, stable linmt cycles Fig.2

in

the form Vy =y(2 -y). The eigenfunctions of the Or-Somerfeld equation

@(y) were normalized by conditions ¢(1)=1 for even functions and @' (1)=1

for
ort

odd ones. The integration of equations was carried out by the
hogonal i zati on net hod. Each equation was integrated on its nonuniform

mesh whi ch condensed in a region of critical layer and near wall
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