Wie bekannt, ist die allgemeine Form eines linearen Funktionals im Raume c die folgende:

$$\varphi(x) = \alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n + \dots, \quad \sum_{n} |\alpha_n| < + \infty.$$
 [2]

Nach einem allgemeinen Satze von S. Banach (1), kann ein solches Funktional, ohne seine Norm zu vergrössern, auf den ganzen Raum m fortgesetzt werden (nicht eindeutig). Eine von solchen Fortsetzungen wird durch die Formel [2] geliefert, welche für jeden $x \in m$ einen Sinn hat. Der folgende Satz charakterisiert diese Fortsetzung als die einzige, welche die Norm nicht vergrössert.

Satz 2. Jede Fortsetzung eines in c gegebenen linearen Funktionals auf m, die nicht durch Form [2] ausgedrückt wird, vergrössert notwendig

seine Norm.

Satz 3. Die allgemeine Form einer totalstetigen (bzw. einfach stetigen) linearen Operation, die l_1 in sich abbildet, wird durch

$$y_m = \sum_{n=1}^{\infty} \alpha_{mn} x_n \tag{4}$$

gegeben, wobei die Reihen

$$\sum_{m=1}^{\infty} |\alpha_{mn}|, \quad n = 1, 2, \dots$$
 [5]

gleichmässig in n konvergieren (bzw. konvergieren und beschränkte Summen haben).

Forschungsinstitut für Mathematik und Mechanik der Universität. Leningrad. Eingegangen d. 1. XII. 1934.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА—LITERATUR

¹ S. Banach. Théorie des opérations linéaires. Warszawa, 1932. ⁸ A. Kolmo-goroff. Math. Ann., Bd. 103, 1930, insbes. S. 663 und 683. ⁸ Г. М. Фихтенгольци Л. В. Канторович. ДАН, 1934, т. III, № 5, стр. 307. G. Fichtenholz u. L. Kantorovič. C. R. Acad. Sci. URSS, 1934, v. III, № 5, S. 310.

MATEMATHKA

м. келдыш и м. лаврентьев

К ТЕОРИИ КОНФОРМНЫХ ОТОБРАЖЕНИЙ

(Представлено академиком Н. Н. Лузиным 2 XII 1934)

Пусть D есть область Жордана, ограниченная спрямляемой кривой Γ , и пусть w=f(z) есть функция, реализующая конформное отображение круга |z|<1 на область D. Ряд граничных задач теории функций сводится к вопросу о представимости функции $\ln |f'(z)|$ при |z|<1 интегралом Пуассона. В первой части настоящей заметки дается решение этой задачи, а также задач, с ней связанных. Во второй части рассматривается вопрос о представимости функции $z=\varphi(w)$ обратной для w=f(z) рядом полиномов.

Довлады Авад. Наук СССР, 1935, том I, № 2-3

1. Теорема 1. Существует односвязная и однолистная область Δ , отличная от круга |w| < 1, ограниченная спрямляемой кривой, содержащая точку w = 0 и такая, что при конформном отображении этой области на круг |z| < 1, $z = \varphi(w)$, $\varphi(0) = 0$, всякая дуга γ , принадлежащая Γ , переходит в дугу окружности |z| = 1 той же длины.

Отметим ряд свойств области Δ.

Свойство 1. Для функции, дающей конформное отображение круга |z| < 1 на область Δ , $\ln |f'(z)|$ не представим интегралом Пуассона.

Свойство 2. Каковы бы ни были числа $\delta > 0$, K > 0, существуют числа $\varepsilon > 0$, $\rho < 1$ и на кривой $|\varphi(w)| = \rho$ система дуг с суммой длин равной ε , такие что при отображении Δ на круг |z| < 1 дугам γ_i соответствуют дуги окружности $|z| = \rho$, сумма длин которых больше, чем: $K|\ln \varepsilon|^{-1-\delta}$.*

Свойство 3. Пусть r конформный радиус области Δ , соответствующий точке w=0, $(r=|\varphi'(0)|)$, и пусть $\psi(w)$ функция, правильная в замкнутой области и удовлетворяющая условию $|\psi(0)|=1$. Существует

абсолютная константа a > 1, такая что

$$\int_{\Gamma} |\Psi(w)| \cdot |dw| > 2\pi ra.$$

Из рассмотрений В. И. Смирнова (2) и свойства 1 области **A** непо-

средственно вытекают дальнейшие свойства области Δ.

Свойство 4. В области Δ существует функция F(w), представимая в Δ интегралом Коши и такая, что внутри Δ имеем: |F(w)| > 1, а на границе Δ почти всюду |F(w)| = 1.

Свойство 5. Для области Δ не существует полной системы поли-

номов, ортогональных по контуру Г.

2. Пусть D произвольная однолистная и односвязная область, ограниченная спрямляемой кривой Γ и содержащая точку w=0. Обозначим через $J_n(w)^{**}$ полином

$$J_n(w) = w + c_2 w^2 + \ldots + c_n w^n,$$

реализующий минимум интеграла:

$$\int_{\Gamma} |P_{n}'(w)| |dw|,$$

где:

$$P_n(w) = w + a_2 w^2 + \ldots + a_n w^n.$$

Обозначим через K_0 класс односвязных областей, ограниченных спрямляемой кривой и таких, что $\ln |f'(z)|$ представим интегралом Пуассона при |z| < 1, где w = f(z), f(0) = 0 есть функция, дающая конформное отображение круга на область D.

Класс K_0 содержит все области, ограниченные спрямляемой кривой

и принадлежащие классу R $(m, +\infty)$ или классу $R(-\infty, M)$.

Класс K_0 также содержит все области, граница Γ которых обладает следующим свойством: существует число p, p > 0 такое, что какова бы ни была дуга γ , γ (Γ , отношение длины γ к ее диаметру не больше p.

^{*}Это свойство показывает, что невозможно существенно обобщить одну теорему М. Лаврентьева (1).
** Полиномы $J_n(w)$ были впервые рассмотрены G. Julia.

Теорема 2. Для того чтобы последовательность полиномов $J_n(w)$ сходилась внутри области Δ , к функции, дающей конформное отображение Δ на круг |z| < 1, $\varphi(0) = 0$, $\varphi'(0) = 1$, необходимо и достаточно, чтобы D принадлежала классу K_0 . Если область D принадлежит классу K_0 , то сходимость равномерна в замкнутой области \overline{D} .

Физико-математический институт им. В. А. Стеклова Академии Наук СССР. Москва. Поступило 2 XII 1934.

MATHÉMATIQUES

SUR LA REPRÉSENTATION CONFORME

Par M. KELDYŠ (KELDYSCH) et M. LAVRENTJEV

(Présenté par N. Lusin, de l'Académie, le 2. XII. 1934)

Soit D un domaine de Jordan, limité par une courbe rectifiable et soit w = f(z) la fonction qui réalise la représentation conforme du cercle |z| < 1 sur D. Quelques problèmes limites de la théorie des fonctions se réduisent à la question suivante: la fonction $\ln |f'(z)|$, est-elle représentable par l'intégrale de Poisson dans le cercle |z| < 1? Dans la première partie de cette Note nous donnons une réponse à cette question et à quelques questions qui s'y rattachent. Dans la deuxième partie nous obtenons une propriété des polynômes extrémaux introduits par M. Julia.

1. Théorème 1. Il existe un domaine Δ , simplement connexe, univalent, limité par une courbe rectifiable Γ , renfermant l'origine; ce domaine ne coıncide pas avec le cercle |w| < 1 et jouit de la propriété suivante: dans la représentation conforme $z = \varphi(w)$, $\varphi(0) = 0$, de Δ sur le cercle |z| < 1, il correspond à chaque arc γ , γ (Γ , une arc de même longueur

sur la circonférence |z|=1.

Indiquons quelques propriétés nouvelles du domaine Δ.

1-re propriété. Soit w=f(z) la fonction qui réalise la représentation conforme du cercle |z| < 1 sur Δ . La fonction $\ln |f'(z)|$ n'est pas re-

présentable par l'intégrale de Poisson dans le cercle |z| < 1.

2-me propriété. Quels que soient deux nombres positifs K et δ , il existe deux nombres $\rho < 1$ et $\epsilon > 0$ et un système d'arcs γ_i , dont la somme des longueurs est égale à ϵ , sur la courbe $|\varphi(w)| = \rho$, tels que dans la représentation conforme de Δ sur la cercle |z| < 1, il correspond aux arcs γ_i un système d'arcs de $|z| = \rho$, dont la somme des longueurs est plus grande que $K |\ln \epsilon|^{-1-\delta}$.*

3-me propriété. Soit $\psi(w)$ une fonction régulière dans le domaine fermé $\overline{\Delta}$, et telle que, $|\psi(0)| = |\varphi'(0)|$. Il existe une constante absolue

a, telle que

$$\int_{\mathbf{r}} |\psi(w)| |dw| > 2\pi + a.$$

^{*} Il résulte de cette propriété que les théorèmes 5 et 6 de M. Layrentjev (1) ne sont pas susceptibles d'une généralisation essentielle.

En comparant la première propriété de A avec quelques résultats de

V. Smirnov (2), on obtient les deux propriétés suivantes de Δ.

4-me propriété. Il existe une fonction F(w), représentable par l'intégrale de Cauchy à l'intérieur de Δ et telle qu' à l'intérieur de $\Delta \mid F(w) \mid > 1$, et sur la frontière de Δ on a $\mid F(w) \mid = 1$ presque partout.

5-me propriété. Il n'existe pour le domaine Δ aucun système

complet de polynômes orthogonaux sur le contour r.

2. Soit D un domaine simplement connexe quelconque, limité par une courbe rectifiable Γ , renfermant l'origine. Désignons par $J_n(w)$ le polynôme

$$J_n(w) = w + c_2 w^2 + \ldots + c_n w^n$$

qui donne la valeur minimale à l'intégrale

$$\int_{\Gamma} |P'_{n}(w)| dw, \quad \text{où} \quad P_{n}(w) = w + a_{2} w^{2} + \ldots + a_{n} w^{n}.$$

Désignons par K_0 la classe des domaines limités par les courbes rectifiables et tels que ln |f'(z)| est représentable par l'intégrale de Poisson dans le cercle |z| < 1, où f(z) réalise la représentation conforme du cercle |z| < 1 sur D(f(0) = 0).

La classe Ko contient les domaines limités par les courbes rectifiables

et appartenant à la classe $R(m, +\infty)$ ou à la classe $R(-\infty, M)^{**}$.

La classe K_0 contient aussi les domaines, dont la frontière Γ jouit de la propriété suivante: il existe un nombre positif p, tel que, quel que soit l'arc γ, γ (Γ , le rapport de la longueur de γ à son diamètre est inférieur à p.

Théorème 2. Pour que la suite des polynômes $J_n(w)$ converge à l'intérieur du domaine D vers la fonctions $\varphi(w)$, réalisant la représentation conforme du domaine D sur le cercle |z| < 1, $(\varphi(0) = 0, (\varphi'(0) = 1),$ il est nécessaire et suffisant que D appartienne à la classe K_0 . Si le domaine D appartient à la classe K_0 , la convergence est uniforme dans le domaine fermé \overline{D} .

Institut physico-mathématique V. Stekloff de l'Académie des Sciences de l'URSS, Moscou.

Manuscrit reçu le 2. XII. 1934.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА — LITTÉRATURE CITÉE

1 М. Лаврентьев. ДАН, 1935, I, 1, теорема 5. М. Lavrentjev. C. R. Acad. Sci. URSS, 1935, I, 1. ² В. П. Смирнов. ИМЕН, 1932. V. Smirnov. Bull. Acad. Sci URSS, 1932.

^{*}Les polynômes $J_n(w)$ ont été introduits par M. Julia. ** La définition des classes $R(m, +\infty)$ et $R(M, +\infty)$ voir l. c., p. 2.