List of illustrations .......................................... ix
Preface ........................................................ xv
Part I Scattering and liquids .................................. 1
1 Scattering techniques for the liquid state ................... 3
1.1 Introduction ............................................ 3
1.2 Module - Small angle neutron scattering ................ 28
2 Statistical mechanics of the liquid state ................... 48
2.1 Pair correlations and structure factors in liquids ..... 49
2.2 The Ornstein-Zernike equation and its approximate
solutions .............................................. 66
2.3 Theories of macroion solutions ......................... 80
3 Aggregation and cluster formation ........................... 88
3.1 Introduction ........................................... 88
3.2 Module - Reaction controlled aggregation of colloidal
particles .............................................. 92
3.3 Module - Diffusion controlled irreversible
aggregation and supramolecular ordering ............... 101
3.4 Module - Percolation in microemulsions ................ 109
3.5 Module - Critical supramolecular systems .............. 114
Part II Structural arrest .................................... 125
4 The theory of slow dynamics in supercooled colloidal
solutions .................................................. 127
4.1 Introduction .......................................... 127
4.2 Module - The mode-coupling theory of supercooled
liquids ............................................... 131
4.3 Module - MCT for repulsive and attractive glasses ..... 139
4.4 Module - Clustering in systems with competing
interactions .......................................... 151
5 Experiments on structural arrest ........................... 157
5.1 Introduction .......................................... 157
5.2 Module - Experiments on the glass transition in PMMA .. 158
5.3 Module - Copolymer solutions and higher-order
singularities ......................................... 160
5.4 Module - The glass-glass transition ................... 166
6 Models of gel-forming colloids ............................. 179
6.1 Introduction .......................................... 179
6.2 Module - Limited valence models ....................... 182
6.3 Module - Patchy colloids and Wertheim theory .......... 184
6.4 Module - Gel-forming colloids and network glass
formers ............................................... 194
Part III Water ............................................... 209
7 Dynamic crossover phenomena in confined water .............. 211
7.1 Introductory remarks on confined water ................ 211
7.2 Module - Model for water's single-particle
dynamics-relaxing cage model (RCM) .................... 224
7.3 Module - Dynamic crossover in hydration water of
biomaterials .......................................... 228
7.4 Module - Dynamic crossover in hydration water of
cement pastes ......................................... 249
7.5 Module - Dynamic crossover in confined water and its
relation to the second critical point of water ........ 252
7.6 Module - Density measurement of confined water
inMCM-41S ............................................. 258
8 Dynamic crossover phenomena in other glass-forming
liquids .................................................... 274
8.1 Introduction .......................................... 274
8.2 Absence of structural arrest at Tg .................... 281
8.3 Fractional Stokes-Einstein relation ................... 283
9 Inelastic neutron scattering in water ...................... 286
9.1 Introduction to Q-dependent density of states
Gs(Q, ω) of water ..................................... 286
9.2 Density of state measurements of water: a plausible
evidence for the existence of a liquid-liquid phase
transition in low-temperature water ................... 293
9.3 Measuring boson peak as a means to explore the
existence of the liquid-liquid transition in deeply
cooled confined water ................................. 301
10 Introduction to high-resolution inelastic X-ray
scattering spectroscopy .................................... 309
10.1 Comparison of inelastic neutron scattering and
inelastic X-ray scattering techniques ................. 309
10.2 Module - Theory of inelastic X-ray scattering from
monoatomic liquids .................................... 324
10.3 Module - Finite Q collective modes in bio-
macromolecular assemblies ............................. 336
References .................................................... 359
Index ......................................................... 379
|