Putz M.V. Quantum and optical dynamics of matter for nanotechnology (Hershey, 2014). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPutz M.V. Quantum and optical dynamics of matter for nanotechnology. - Hershey: Engineering science reference / IGI Global, 2014. - xvi, 509 p.: ill. - (Premier reference source). - Incl. bibl. ref. - Ind.: p.507-509. - ISBN 978-1-4666-4687-2
Шифр: (И/В37-P98) 02

 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Foreword ........................................................ x
Preface ....................................................... xii
Acknowledgment ................................................ xvi

Section 1 Quantum Dynamics of Nano-Systems

Chapter 1. Interacting Quantum Systems .......................... 1
1.1  Introduction ............................................... 1
1.2  Schrödinger Equation ....................................... 2
1.3  Time-Evolution Operator .................................... 3
1.4  Transition Rates and Amplitudes ............................ 7
1.5  The Superposition Principle ................................ 9
1.6  Reduced Statistical Operator .............................. 12
1.7  Projector Operator Formalism: Interaction with the
     Environment ............................................... 15
1.8  The Generalized Master Equation. Memory
     Effects ................................................... 17
1.9  More Reservoir Correlations ............................... 20
1.10 The Markovian Quantum Master Equation ..................... 26
1.11 The Fokker-Planck Equation ................................ 29
1.12 Path Integral Method of Quantum Dynamics .................. 32
1.13 Conclusion ................................................ 35

Chapter 2  The Dynamics of Molecular Photo-Dissociation ........ 38
2.1  Introduction .............................................. 38
2.2  Types of Photo-Dissociation ............................... 39
2.3  Forms of Cross-Sections ................................... 42
2.4  Time-Dependent Perturbation Theory ........................ 44
2.5  Absorption Cross-Section .................................. 47
2.6  The Born-Oppenheimer Approximation ........................ 48
2.7  Transitions in a Triatomic Molecule ....................... 49
2.8  The Quantum Equations of Photodissociation ................ 53
2.9  Autocorrelation Functions: The Total Absorption Spectrum .. 58
2.10 Evolution of The Wave-Packet .............................. 60
2.11 Indirect Photodissociation ................................ 64
2.12 Decay of the Excited States ............................... 66
2.13 Time-Dependent Wave-Packets: Recurrences .................. 69
2.14 Time-Independent Wave-Packets: Resonances ................. 74
2.15 Emission and Dissociation Spectroscopy .................... 77
2.16 Conclusion ................................................ 79

Chapter 3. The Fundamentals of Quantum Optical Transitions ..... 82
3.1  Introduction .............................................. 82
3.2  Cavity Modes of Black-Body Radiation ...................... 83
3.3  The Fundamentals of Lasers ................................ 85
3.4  The Widths and Profiles of Spectral Lines ................. 89
3.5  The Collision Broadening of Spectral Lines ............... 103
3.6  Discrete and Continuous Absorption and Emission Spectra .. 107
3.7  Lifetimes: Spontaneous and Radiationless Transitions ..... 110
3.8  A Semiclassical Description of Transition Amplitudes ..... 113
3.9  Decay Phenomena .......................................... 119
3.10 Interactions with Strong Fields .......................... 121
3.11 Coherent Excitations and Relaxations ..................... 125
3.12 Line Broadening, Saturation by Optical Pumping, and
     Profiles in Liquids/Solids ............................... 129
3.13 Conclusion ............................................... 137

Chapter 4. Light Amplification Analysis ....................... 141
4.1  Introduction ............................................. 141
4.2  A Laser's Threshold Condition ............................ 142
4.3  Rate Equations ........................................... 143
4.4  Open Optical Resonators: Plane Resonators ................ 145
4.5  Open Optical Resonators: Spatial Field Distribution ...... 148
4.6  Gaussian Beams ........................................... 149
4.7  Confocal Resonators ...................................... 164
4.8  Stable and Unstable Resonators ........................... 169
4.9  Ring Resonator ........................................... 171
4.10 The Frequency Spectrum of the Passive Resonator .......... 174
4.11 Active Resonators. Laser Modes ........................... 176
4.12 Gain Saturation and Hole Burning ......................... 178
4.13 Multimode Laser. Gain Competition and Mode Pulling ....... 185
4.14 Line Selection ........................................... 187
4.15 The Linewidths of Single-Mode Lasers ..................... 193
4.16 The Basics of Polarization Spectroscopy .................. 198
4.17 Stimulated Raman Scattering .............................. 205
4.18 Conclusion ............................................... 211

Chapter 5. The Basics of Non-Linear Optics .................... 214
5.1  Introduction ............................................. 214
5.2  General Maxwell's Equations .............................. 215
5.3  The Coupled Substance-Wave Equations ..................... 217
5.4  The Manley-Rowe Relationships ............................ 222
5.5  Sum-Frequency Generation ................................. 223
5.6  Difference-Frequency Generation .......................... 226
5.7  Second Harmonic Generation ............................... 228
5.8  Phase-Matching Considerations ............................ 233
5.9  Alignments of Non-Linear Optics .......................... 240
5.10 Conclusion ............................................... 248

Chapter 6. Molecular Light Control in Rare-Gases Matrices:
The HCl Case .................................................. 251
6.1  Introduction ............................................. 251
6.2  The Spectra of HCL in Noble-Gas Matrices ................. 252
6.3  The Rotational Effects of Hydrides in Rare Gas Matrices .. 259
6.4  The Vibrational Effects of Hydrides in Rare Gas
     Matrices ................................................. 263
6.5  Selective Chemical Reactions ............................. 269
6.6  The Cooperative Charge Transfer Dynamics of a Localized
     [ArCL] Exciplex .......................................... 274
6.7  Cooperative Photoabsorption: The Harpoon Mechanism of
     [XeCL] Exciplex .......................................... 281
6.8  Conclusion ............................................... 298

Section 2 Nano-Interferometry

Chapter 7. Raman Saturate Absorption .......................... 303
7.1  Introduction ............................................. 303
7.2  Stimulated Raman Effect .................................. 304
7.3  Atomic Dynamics within Electromagnetic Fields: The
     Linear and Quadratic Effects ............................. 306
7.4  Hole Burning Effect ...................................... 316
7.5  Raman-Rayleigh Effects, Dynamics of Stark Splitting,
     Rabi Frequencies ......................................... 319
7.6  Finite and Infinite Absorption Doppler Shifts ............ 324
7.7  Conclusion ............................................... 327

Chapter 8. Spectral Atomic Selection and Pumping .............. 329
8.1  Introduction ............................................. 329
8.2  The Ramsey Effect ........................................ 330
8.3  Atomic Pump: The Intermediate Level and it's Adiabatic
     Exclusion ................................................ 333
8.4  Pi-Pulses and Ramsey-Raman Sequence ...................... 338
8.5  Atomic and Molecular Interferometer ...................... 341
8.6  Conclusion ............................................... 346

Chapter 9. Gravitational Influence on Atomic Interference ..... 348
9.1  Introduction ............................................. 348
9.2  Atomic Interferometer with Gravitational Field ........... 349
9.3  Atomic Interferometer with Laser Field ................... 350
9.4  Kasevich-Chu Interferometer .............................. 354
9.5  Overview and Conclusion .................................. 357

Chapter 10. General Relativity Evolution of the Photons in
Dielectrics ................................................... 361
10.1 Introduction ............................................. 361
10.2 Equivalence Principle and Linear Einstein Equations Of
     Gravity .................................................. 362
10.3 Laser Waves in Dielectric Guides ......................... 365
10.4 Gravitation Field for Dielectrics with Laser Pulse ....... 366
10.5 Einstein-Maxwell Equations in Dielectrics ................ 370
10.6 Gravitational Deviation of Laser Pulses in Dielectrics ... 383
10.7 Conclusion ............................................... 388

Section 3 Nano-Diffraction

Chapter 11. General Concepts and Theories in X-Ray
Diffraction ................................................... 391
11.1 Introduction ............................................. 391
11.2 Geometric vs. Dynamic Theories ........................... 392
11.3 Perfect Crystal Diffraction .............................. 397
11.4 Imperfect Crystal Diffraction ............................ 401
11.5 Conclusion ............................................... 405

Chapter 12. Classical and Quantum Theories of Dynamic X-Ray
Diffraction ................................................... 409
12.1 Introduction ............................................. 409
12.2 Semi-Classical Theory .................................... 410
12.3 Quantum Theory ........................................... 420
12.4 Conclusion ............................................... 428

Chapter 13. The Concept of X-Ray Standing Wave ................ 431
13.1 Introduction ............................................. 431
13.2 Anomalous Absorption vs. Fluorescence .................... 432
13.3 Atomic Scattering Factor ................................. 437
13.4 The Crystal with a Buried Layer .......................... 441
13.5 Distorted Crystals ....................................... 452
13.6 Conclusion ............................................... 459

Chapter 14. Experimental Implications of X-Ray Standing
Waves ......................................................... 462
14.1 Introduction ............................................. 462
14.2 Formal Absorption Coefficients ........................... 463
14.3 Fields and Diffraction Intensities ....................... 466
14.4 Experimental vs. Theoretical Fluorescence ................ 469
14.5 Asymmetrical Brag Factor: Successive Diffraction ......... 475
14.6 Conclusion ............................................... 480

Chapter 15. Absorption Coefficients of Inelastic Dynamic
X-Ray Diffraction ............................................. 483
15.1 Introduction ............................................. 483
15.2 Dispersion Equation in Inelastic Diffraction ............. 484
15.3 Vibrational Lattice Effects in Absorption ................ 487
15.4 Inelastic Absorption Coefficients ........................ 495
15.5 Conclusion ............................................... 500

Compilation of References ..................................... 503
About the Author .............................................. 506
Index ......................................................... 507


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:28:38 2019. Размер: 15,251 bytes.
Посещение N 1496 c 29.03.2016