Handbook of high-temperature superconductivity: theory and experiment (New York, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of high-temperature superconductivity: theory and experiment / ed. by J.R.Schrieffer, J.S.Brooks. - New York: Springer Science + Business Media, 2007. - xxxii, 627 p.: ill. - Incl. bibl. ref. - Ind.: p.615-627. - Пер. загл.: Руководство по высотемпературной сверхпроводимости. Теория и эксперимент - ISBN 978-0-387-35071-4
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
Acknowledgments ................................................ ix
List of Contributors .......................................... xxi
Credit Lines ................................................ xxiii

1    From Single- to Bipolarons with Jahn-Teller Character
     and Metallic Cluster-Stripes in Hole-Doped Cuprates ........ 1
     K.A. Müller
1.1  The Original Jahn-Teller Polaron Concept and Its
     Shortcomings ............................................... 1
1.2  Recent Experiments Probing Delocalized Properties .......... 2
1.3  Probing of Local Properties ................................ 4
1.4  The Intersite JT-Bipolaron Concept Derived from EXAFS,
     EPR, and Neutron Scattering ................................ 5
1.5  Two-Component Scenario ..................................... 7
1.6  JT-Bipolarons as the Elementary Quasiparticles to
     Understand the Phase Diagram and Metallic Clusters or
     Stripes .................................................... 9
1.7  Substantial Oxygen Isotope Effects ........................ 12
1.8  Concluding Remarks ........................................ 17
     Bibliography .............................................. 17

2    Tunneling Measurements of the Cuprate Superconductors ..... 19
     J.R. Kirtley and F. Tafuri
2.1  Introduction .............................................. 19
2.2  General Concepts .......................................... 20
     2.2.1  Types of Junction Structures ....................... 20
     2.2.2  Generalized Junction Conductance ................... 22
     2.2.3  The Tunnel and Proximity Effects ................... 22
     2.2.4  Andreev Reflection and Bound States ................ 25
     2.2.5  The Josephson Effect: General Features ............. 27
            Andreev Reflection in SNS Junctions ................ 28
2.3  Means of Preparing Tunnel Junctions ....................... 32
     2.3.1  Junctions with Single Crystals ..................... 32
     2.3.2  Grain Boundary Junctions ........................... 32
            Bicrystal Junctions ................................ 32
            Biepitaxial Junctions .............................. 33
            Step-Edge Junctions ................................ 34
            Electron Beam Junctions ............................ 34
     2.3.3  Junctions with Artificial Barriers ................. 35
            Noble Metal Barriers ............................... 35
            Perovskite and Layered Materials Barriers .......... 36
     2.3.4  Interface-Engineered Junctions ..................... 37
     2.3.5  Junctions with HTS Rather than YBCO ................ 37
            La1.85Sr0.15CuO4-Based Trilayer with
            One-Unit-Cell-Thick Barrier ........................ 37
            Electron Doped HTS ................................. 38
            Ca and Co Doped YBCO: Insights into the Overdoped
            Regime ............................................. 38
            Ultra-Thin Films and Superlattices ................. 38
            Intrinsic Stacked Junctions ........................ 38
2.4  π-Rings and 0 - π-Junctions ................................. 39
2.5  Tunneling Spectroscopy .................................... 44
     2.5.1  Superconducting Gap ................................ 44
            General Features ................................... 44
            Temperature Dependence ............................. 50
            Momentum Dependence ................................ 53
            Doping Dependence .................................. 57
            Macroscopic Quantum Effects ........................ 59
     2.5.2  Pseudogap .......................................... 60
            Temperature Dependence ............................. 60
            Magnetic Field Dependence .......................... 62
     2.5.3  Linear Conduction Background ....................... 64
     2.5.4  Zero-Bias Anomalies ................................ 65
     2.5.5  Atomically Resolved Conductivity Modulation
            Effects ............................................ 69
     2.5.6  Strong Coupling Effects ............................ 72
            Electron-Phonon .................................... 73
            Electron-Magnon .................................... 74
2.6  Conclusions ............................................... 75
     Bibliography .............................................. 75

3    Angle-Resolved Photoemission Spectroscopy on Electronic
     Structure and Electron-Phonon Coupling in Cuprate
     Superconductors ........................................... 87
     X.J. Zhou, Т. Cuk, T. Devereaux, N. Nagaosa, and
     Z.-X. Shen
3.1  Introduction .............................................. 87
3.2  Angle-Resolved Photoemission Spectroscopy ................. 88
     3.2.1  Principle .......................................... 88
     3.2.2  Technique .......................................... 90
3.3  Electronic Structures of High Temperature
     Superconductors ........................................... 95
     3.3.1  Basic Crystal Structure and Electronic Structure ... 95
     3.3.2  Brief Summary of Some Latest ARPES Results ......... 98
3.4  Electron-Phonon Coupling in High Temperature
     Superconductors ........................................... 98
     3.4.1  Brief Survey of Electron-Phonon Coupling in High-
            Temperature Superconductors ........................ 99
     3.4.2  Electron-Phonon Coupling: Theory .................. 102
            General ........................................... 102
            Weak Coupling - Perturbative and Self-Energy
            Description ....................................... 106
            Strong Coupling - Polaron ......................... 110
     3.4.3  Band Renormalization and Quasiparticle Lifetime
            Effects ........................................... 111
            El-Ph Coupling Along the (0,0)-(π, π) Nodal
            Direction ......................................... 111
            Multiple Modes in the Electron Self-Energy ........ 116
            El-Ph Coupling Near the (π, 0) Antinodal Region ... 118
            Anisotropic El - Ph Coupling ........................ 122
     3.4.4  Polaronic Behavior ................................ 124
            Polaronic Behavior in Parent Compounds ............ 124
            Doping Dependence: From Z~0 Polaron to Finite Z
            Quasiparticles .................................... 128
            Doping Evolution of Fermi Surface: Nodal-
            Antinodal Dichotomy ............................... 130
     3.4.5  Electron-Phonon Coupling and High Temperature
            Superconductivity ................................. 135
3.5  Summary .................................................. 137
     Bibliography ............................................. 138

4    Microwave Electrodynamics of High Temperature
     Superconductors .......................................... 145
     D.A. Bonn and W.N. Hardy
4.1  Introduction ............................................. 145
4.2  Electrodynamics of Superconductors ....................... 146
     4.2.1  London Theory ..................................... 146
     4.2.2  Surface Impedance Approximation ................... 147
     4.2.3  Non-local Electrodynamics ......................... 151
     4.2.4  Excitation Spectrum of a d-Wave Superconductor .... 151
            Phenomenological Pairing Model .................... 152
            Effect of Impurities .............................. 154
4.3  Experimental Techniques .................................. 156
     4.3.1  Penetration Depth Techniques - Single Crystals .... 158
            Excluded Volume Techniques ........................ 158
            Far Infrared Reflectivity: ǀRǀe ................... 159
            Measurement of Internal Field Distribution in
            Mixed State ....................................... 160
            Zero-Field Gadolinium ESR ......................... 161
     4.3.2  Penetration Depth Techniques - Thin Films ......... 161
            Low Frequency Mutual Inductance Techniques ........ 161
            Thin Film Resonator Techniques .................... 161
            Millimetre Wave Transmission ...................... 162
            Far-Infrared Reflection ........................... 162
            Slow Muon Beam Method ............................. 162
     4.3.3  Penetration Depth Techniques - Powders ............ 162
4.4  Measurement of Surface Resistance Rs ..................... 163
     4.4.1  Single Crystals ................................... 163
            Cavity Perturbation ............................... 163
            Broadband Bolometric Spectroscopy ................. 165
            Thin Film Methods ................................. 165
4.5  Penetration Depth ........................................ 166
     4.5.1  Complementary Roles of I and Rs ................... 166
     4.5.2  YBa2Cu306+x ....................................... 167
     4.5.3  Penetration Depth Anisotropy in YBa2Cu206+x ........ 170
     4.5.4  Oxygen Doping Effects ............................. 171
     4.5.5  Other Materials ................................... 174
            Bi2Sr2CaCu2O8+δ .................................... 174
            Tl2Ba2CaCu2O8 ...................................... 174
            Тl2Ва2СuO6+δ ....................................... 174
            La1-xSrxCuO4 ....................................... 175
            HgBa2Ca2Cu3O8+δ .................................... 175
            Electron Doped Thin Films and Single Crystals ..... 175
     4.5.6  ĉ-Axis Penetration Depth .......................... 177
4.6  Surface Resistance ....................................... 179
     4.6.1  YBa2Cu306+x aVPlane ................................ 180
     4.6.2  Disorder and Quasiparticle Damping ................ 185
     4.6.3  Other Materials - âb-Plane ........................ 187
     4.6.4  Low Temperature Limit ............................. 193
     4.6.5  Anisotropy ........................................ 200
4.7  Fluctuations ............................................. 202
     Bibliography ............................................. 209

5    Magnetic Resonance Studies of High Temperature
     Superconductors .......................................... 215
     Charles P. Slichter
5.1  Introduction ............................................. 215
5.2  Basic NMR Theory and Experiment .......................... 216
     5.2.1  The Resonance Spectrum ............................ 216
     5.2.2  Exciting a Resonance .............................. 217
     5.2.3  Spin-Lattice Relaxation ........................... 219
     5.2.4  Double Resonance .................................. 220
     5.2.5  NMR in Superconductors ............................ 221
5.3  NMR in Normal State Metals ............................... 221
5.4  NMR in Conventional BCS Superconductors .................. 223
5.5  The Cuprate Spin Hamiltonian ............................. 224
5.6  YBCO above Tc ............................................ 226
     5.6.1  One or Two Components? ............................ 226
     5.6.2  The Spin Pseudogap ................................ 227
     5.6.3  The Spin-Lattice Relaxation Time .................. 227
     5.6.4  Transverse Relaxation and T2G ..................... 232
     5.6.5  Scaling Relationships ............................. 234
5.7  YBCO Below Tc: NMR Evidence About the Pairing State ...... 236
     5.7.1  The Knight Shift .................................. 236
     5.7.2  Spin-Lattice Relaxation ........................... 239
5.8  LSCO ..................................................... 240
     5.8.1  The Spectrum ...................................... 240
     5.8.2  One or Two Components ............................. 243
     5.8.3  The Incommensurate State .......................... 244
     5.8.4  Spatial Modulation ................................ 245
     5.8.7  The High Temperature Properties ................... 248
     5.8.6  The Low Temperature Properties: Wipeout ........... 248
5.9  Brief Review of EPR ...................................... 252
     Bibliography ............................................. 254

6    Neutron Scattering Studies of Antiferromagnetic
     Correlations in Cuprates ................................. 257
     John M. Tranquada
6.1  Introduction ............................................. 257
6.2  Magnetic Excitations in Hole-Doped Superconductors ....... 259
     6.2.1  Dispersion ........................................ 259
     6.2.2  Spin Gap and "Resonance" Peak ..................... 262
     6.2.3  Discussion ........................................ 263
6.3  Antiferromagnetism in the Parent Insulators .............. 264
     6.3.1  Antiferromagnetic Order ........................... 264
     6.3.2  Spin Waves ........................................ 267
     6.3.3  Spin Dynamics at Г > TN ........................... 271
6.4  Destruction of Antiferromagnetic Order by Hole Doping .... 272
6.5  Stripe Order and Other Competing States .................. 274
     6.5.1  Charge and Spin Stripe Order in Nickelates ........ 274
     6.5.2  Stripes in Cuprates ............................... 276
     6.5.3  Spin-Density-Wave Order in Chromium ............... 279
     6.5.4  Other Proposed Types of Competing Order ........... 280
6.6  Variation of Magnetic Correlations with Doping and
     Temperature in Cuprates .................................. 280
     6.6.1  Magnetic Incommensurability vs. Hole Doping ....... 280
     6.6.2  Doping Dependence of Energy Scales ................ 282
     6.6.3  Temperature-Dependent Effects ..................... 283
6.7  Effects of Perturbations on Magnetic Correlations ........ 284
     6.7.1  Magnetic Field .................................... 284
     6.7.2  Zn Substitution ................................... 286
     6.7.3  Li-Doping ......................................... 286
6.8  Electron-Doped Cuprates .................................. 286
6.9  Discussion ............................................... 288
     6.9.1  Summary of Experimental Trends in Hole-Doped
            Cuprates .......................................... 288
     6.9.2  Theoretical Interpretations ....................... 289
     Bibliography ............................................. 290

7    Optical Conductivity and Spatial Inhomogeneity in Cuprate
     Superconductors .......................................... 299
     J. Orenstein
7.1  Introduction ............................................. 299
     7.1.1  Optical Conductivity of Superconductors ........... 299
     7.1.2  Optical Conductivity and the Cuprates ............. 300
7.2  Low Frequency Optical Conductivity in the Cuprates ....... 301
     7.2.1  YBCO Single Crystals: Success of the Two-Fluid
            Model ............................................. 301
     7.2.2  The BSCCO System: Failure of the Two-Fluid
            Description ....................................... 303
     7.2.3  Additional Examples ............................... 307
7.3  Optical Conductivity vs. Hole Concentration in BSCCO ..... 309
     7.3.1  Systematics of the Conductivity Anomaly ........... 309
     7.3.2  Quantitative Modeling of а (со, T) ................ 312
7.4  Collective Mode Contribution to Optical Conductivity ..... 314
     7.4.1  Origin of the Collective Contribution ............. 314
     7.4.2  Optical Conductivity in the Presence of
            Inhomogeneity ..................................... 316
     7.4.3  Extended Two-Fluid Model .......................... 316
     7.4.4  Comparison of Model and Experiment ................ 320
7.5  Summary and Outlook ...................................... 321
     7.5.1  Summary ........................................... 321
     7.5.2  Outlook and Directions of Future Research ......... 321
     Bibliography ............................................. 323

8    What Tc can Teach About Superconductivity ................ 325
     Т.H. Geballe and G. Koster
8.1  Introduction ............................................. 325
8.2  Cuprate Superconductivity ................................ 326
     8.2.1  Pairing and Tcs in the Cuprates ................... 327
     The Cu Ion ............................................... 327
8.3  Interactions Beyond the Cu02 Layers ...................... 328
     8.3.1  Pairing Centers in the Charge Reservoir Layer
            Cuprates .......................................... 329
     8.3.2  Negative-U Center Electronic Pairing in a Model
            System ............................................ 330
     8.3.3  The Chain-Layer Cuprates .......................... 334
     8.3.4  Other Chain Layer Compounds ....................... 338
8.4  Superconductivity Originating in the CuO2 Layers ......... 339
8.5  Summary .................................................. 341
     Bibliography ............................................. 341

9    High-Tc Superconductors: Thermodynamic Properties ........ 345
     R.A. Fisher, J.E. Gordon, and N.E. Phillips
9.1  Introduction ............................................. 345
     9.1.1  Scope and Organization of the Review .............. 345
     9.1.2  Cuprate Superconductors: Occurrence; Structures;
            Nomenclature; Phase Diagram; Characteristic
            Parameters ........................................ 346
     9.1.3  Magnetic Properties; Critical-Field Measurements .. 349
     9.1.4  Specific-Heat Measurements ........................ 350
            Specific Heat: Component Contributions; Field
            and Temperature Dependences; Nomenclature ......... 350
            Specific Heat: Experimental Techniques ............ 352
            Specific Heat: Problems and Uncertainties in
            Analysis of Data .................................. 353
9.2  Low-Temperature Specific Heat ............................ 353
     9.2.1  Zero-Field "Linear" Term .......................... 354
     9.2.2  Evidence for Line Nodes in the Energy Gap ......... 357
9.3  Chemical Substitutions ................................... 360
     9.3.1  Rare-Earth Substitutions on the Y and La Sites .... 361
     9.3.2  General Effects of Substitutions on the Cu Sites .. 362
     9.3.3  Effects of Zn Substitution on the Cu Sites ........ 364
9.4  Stripes .................................................. 367
9.5  Specific-Heat Anomaly at Tc: Fluctuations; BCS
     Transition, ВЕС .......................................... 372
     9.5.1  Gaussian and Critical Fluctuations ................ 372
            Fluctuations: Optimally-Doped Samples in Zero
            Field ............................................. 373
            Fluctuations: Optimally Doped Samples in Field .... 375
            Fluctuations: Under- and Over-Doped Samples ....... 376
     9.5.2  BCS to ВЕС ........................................ 376
9.6  Vortex-Lattice Melting ................................... 380
     9.6.1  Introduction; Early Measurements on YBCO .......... 380
     9.6.2  Other Measurements on YBCO ........................ 381
     9.6.3  Measurements on Other HTS ......................... 386
9.7  Calorimetric Evidence for the Pseudogap .................. 386
     9.7.1  Determination of the Electron Specific Heat of
            YBa2Cu3O6.97 ...................................... 387
     9.7.2  Use of the Differential Method to Obtain the
            Conduction-Eiectron Specific Heat of YBa2Cu3O6+x
             - A Simplified Discussion ........................ 388
     9.7.3  Other Specific-Heat Results and Their
            Interpretation .................................... 390
     Bibliography ............................................. 390

10   Normal State Transport Properties ........................ 399
     N.E. Hussey
10.1 Introduction ............................................. 399
10.2 Evolution of the In-Plane Resistivity with Doping ........ 400
     10.2.1 Introduction ...................................... 400
     10.2.2 Optimally Doped Cuprates .......................... 401
     10.2.3 Underdoped Cuprates ............................... 404
     10.2.4 Overdoped Cuprates ................................ 406
10.3 The Out-of-Plane Transport ............................... 406
     10.3.1 Introduction ...................................... 406
     10.3.2 Optimal Doped Cuprates ............................ 407
     10.3.3 Underdoped Cuprates ............................... 408
     10.3.4 Overdoped Cuprates ................................ 409
10.4 The Anomalous Hall Coefficient and Violation of
     Kohler's Rule ............................................ 410
     10.4.1 Introduction ...................................... 410
     10.4.2 Magnitude of RH ................................... 410
     10.4.3 The Inverse Hall Angle cot νH(T) .................. 411
     10.4.4 Theoretical Modeling of ρab and RH(T) in
            Cuprates .......................................... 412
     10.4.5 In-Plane Magnetoresistance ........................ 414
10.5 Impurity Studies ......................................... 416
10.6 Thermal Transport ........................................ 417
     10.6.1 Introduction ...................................... 417
     10.6.2 Thermoelectric Power .............................. 418
     10.6.3 Thermal Conductivity .............................. 418
     10.6.4 Nernst-Ettinghausen Effect ........................ 419
     10.7 Discussion and Summary .............................. 419
     Bibliography ............................................. 422

11   High-Pressure Effects .................................... 427
     J.S. Schilling
11.1 Introduction ............................................. 427
11.2 Elemental Superconductors ................................ 430
     11.2.1 Simple Metals ..................................... 430
     Nonalkali Metals ......................................... 430
     Alkali Metals ............................................ 433
     11.2.2 Transition Metals ................................. 436
11.3 Binary Superconductors ................................... 437
     11.3.1 A-15 Compounds .................................... 437
     11.3.2 A Special Case: MgB2 .............................. 438
     11.3.3 Doped Fullerenes A3C60 ............................ 439
11.4 Multiatom Superconductors: High-Tc Oxides ................ 442
     11.4.1 Nonhydrostatic Pressure Media ..................... 446
     11.4.2 Structural Phase Transitions ...................... 446
     11.4.3 Oxygen Ordering Effects ........................... 447
     11.4.4 Intrinsic Pressure Dependence Tcintr(P) ............ 451
     11.4.5 Uniaxial Pressure Results ......................... 453
11.5 Conclusions and Outlook .................................. 455
     Bibliography   457

12   Superconductivity in Organic Conductors .................. 463
     J.S. Brooks
12.1 Introduction ............................................. 463
12.2 Organic Building Blocks and Electronic Structure ......... 464
12.3 "Conventional" Properties of Organic Superconductors ..... 466
12.4 The "Standard Model" for Metallic, Insulating, and
     Antiferromagnetic Ground States .......................... 475
     12.4.1 Band Filling and Its Consequences ................. 475
     12.4.2 Can Superconductivity Emerge From the "Standard
            Model"? ........................................... 479
     12.4.3 But What if it is Really Just Phonons? ............ 481
12.5 "Unconventional" Properties of Organic Superconductors ... 481
     12.5.1 Q1D Materials and p-Wave Pairing .................. 481
     12.5.2 Q2D Materials and d-Wave Pairing .................. 482
     12.5.3 Magnetic Field Induced Superconductivity and
            Possible FFLO States .............................. 483
12.6 Comparison of High Tc Superconductors with Organic
     Conductors ............................................... 486
12.7 Summary and Future Prospects ............................. 488
     Bibliography ............................................. 490

13   Numerical Studies of the 2D Hubbard Model ................ 495
     D.J. Scalapino
13.1 Introduction ............................................. 495
13.2 Numerical Techniques ..................................... 496
     13.2.1 Determinantal Quantum Monte Carlo ................. 497
     13.2.2 The Dynamic Cluster Approximation ................. 499
     13.2.3 The Density Matrix Renormalization Group .......... 501
13.3 Properties of the 2D Hubbard Model ....................... 503
     13.3.1 The Antiferromagnetic Phase ....................... 504
     13.3.2 d^ Pairing ........................................ 506
     13.3.3 Stripes ........................................... 510
     13.3.4 ThePseudogap ...................................... 512
13.4 The Structure of the Effective Pairing Interaction ....... 516
13.5 Conclusions .............................................. 522
     Bibliography ............................................. 524

14   t-J Model and the Gauge Theory Description of Underdoped
     Cuprates ................................................. 527
     Patrick A. Lee
14.1 Introduction ............................................. 527
14.2 Basic Electronic Structure of the Cuprates ............... 528
14.3 Phenomenology of the Underdoped Cuprates ................. 531
14.4 Introduction to RVB and a Simple Explanation of the
     Pseudogap ................................................ 534
14.5 Slave-Boson Formulation of t-J Model and Mean Field
     Theory ................................................... 536
14.6 U(1) Gauge Theory of the URVB State ...................... 541
14.7 SU(2) Slave-Boson Theory of Doped Mott Insulators ........ 546
     14.7.1 SU(2) Slave-Boson Mean-Field Theory at Finite
            Doping ............................................ 547
     14.7.2 Effect of Gauge Fluctuations: Enhanced (π, π)
            spin Fluctuations in Pseudogap Phase .............. 550
     14.7.3 σ-Model Effective Theory and New Collective
            Modes in the Superconducting State ................ 551
     14.7.4 Vortex Structure .................................. 554
     14.7.5 Phase Diagram ..................................... 555
14.8 Spin Liquids, Deconfinement, and the Emergence of Gauge
     Fields and Fractionalized Particles ...................... 557
14.9 Application of Gauge Theory to the High Tc
     Superconductivity Problem ................................ 559
     14.9.1 Spin Liquid, Quantum Critical Point, and the
            Pseudogap ......................................... 560
     14.9.2 Signature of the Spin Liquid ...................... 562
14.10 Summary and Outlook ..................................... 563
      Bibliography ............................................ 565

15   How Optimal Inhomogeneity Produces High Temperature
     Superconductivity ........................................ 570
     Steven A. Kivelson and Eduardo Fradkin
15.1 Why High Temperature Superconductivity is Difficult ...... 570
15.2 Dynamic Inhomogeneity-Induced Pairing Mechanism of HTC ... 572
     15.2.1 Pairing in Hubbard Clusters ....................... 573
     15.2.2 Spin-Gap Proximity Effect ......................... 574
15.3 Superconductivity in a Striped Hubbard Model: A Case
     Study .................................................... 576
     15.3.1 Zeroth-Order Solution: Isolated two-Leg Ladders ... 578
     15.3.2 Weak Inter-Ladder Interactions .................... 579
     15.3.3 Renormalization-Group Analysis and Inter-Ladder
            Mean Field Theory ................................. 580
     15.3.4 Thex → 0 Limit ................................... 581
     15.3.5 Relation to Superconductivity in the Cuprates ..... 582
15.4 Why There is Mesoscale Structure in Doped Mott
     Insulators ............................................... 582
15.5 Weak Coupling Vs. Strong Coupling Perspectives ........... 584
15.6 What is so Special About the Cuprates? ................... 585
     15.6.1 Is Charge Order, Or Fluctuating Charge Order,
            Ubiquitous? ....................................... 585
     15.6.2 Does the "Stuff" Between the Cu-O Planes Matter? .. 586
     15.6.3 What About Phonons? ............................... 588
     15.6.4 What About Magnetism? ............................. 588
     15.6.5 Must We Consider Cu-0 Chemistry and the Three-
            Band Model? ....................................... 589
     15.6.6 Is d-Wave Crucial? ................................ 589
     15.6.7 Is Electron Fractionalization Relevant? ........... 590
15.7 Coda: High Temperature Superconductivity is Delicate
     But Robust ............................................... 590
     Bibliography ............................................. 592

16   Superconducting States on the Border of Itinerant
     Electron Magnetism ....................................... 597
     Emma Pugh, Siddharth Saxena, and Gilbert Lonzarich
16.1 Introduction ............................................. 597
16.2 Uncharted Territory: The New Frontier .................... 597
16.3 Logarithmic Fermi Liquid ................................. 598
16.4 The Puzzle of MnSi ....................................... 599
16.5 Superconductivity on the Border of Magnetism ............. 600
16.6 Three Dimensional vs. Quasi-Two-Dimensional Structures ... 600
16.7 Density Mediated Superconductivity ....................... 601
16.8 The Search for Superconductivity on the Border of
     Itinerant Ferromagnetism ................................. 602
16.9 Why Don't All Nearly Magnetic Materials Show
     Superconductivity? ....................................... 605
16.10 From Weak to Strong Coupling ............................ 607
16.11 Superconductivity Without Inversion Symmetry ............ 608
16.12 Quantum Tuning .......................................... 608
16.13 Concluding Remarks ...................................... 611

Bibliography .................................................. 611
Index ......................................................... 615


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:42 2019. Размер: 35,775 bytes.
Посещение N 1728 c 12.08.2014