Handbook of optical systems; vol.2: Physical image formation (Weinheim, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHandbook of optical systems. Vol. 2: Physical image formation / W.Singer, M.Totzeck, H.Gross / ed. by H.Gross. - Weinheim: Wiley-VCH, 2005. - xxiv, 690 p.: ill. - Incl. bibl. ref. - Ind.: p.685-690. - ISBN 3-527-40378-7
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Introduction .................................................. XIX

17    The Wave Equation ......................................... 1
17.1  Introduction .............................................. 2
17.2  From Maxwell to Helmholtz ................................. 2
      17.2.1  Maxwell's Equations and the Inhomogeneous Wave
              Equation ..........................................
      17.2.2  Wave Equation in Homogeneous Media and the
              Scalar Wave Equation .............................. 4
      17.2.3  The Dispersion Relation of the Harmonic Wave
              Solution .......................................... 6
17.3  Elementary Waves in Free Space ............................ 9
      17.3.1  The Electromagnetic Plane Wave .................... 9
      17.3.2  Spherical Wave ................................... 11
      17.3.3  Dipole Wave ...................................... 11
      17.3.4  Radiated Field of a Harmonic Current
              Distribution ..................................... 13
      17.3.5  A Note on Plane and Spherical Waves .............. 13
17.4  Energy, Irradiance and Intensity ......................... 14
17.5  The Angular Spectrum ..................................... 17
      17.5.1  Spatial Frequency Representation ................. 17
      17.5.2  Transformation of the Three-dimensional
              Spectrum into Two Dimensions ..................... 19
      17.5.3  Free-space Propagation of Transverse Fields ...... 20
      17.5.4  Periodic Fields with Discrete Spectra ............ 22
      17.5.5  Boundary Conditions and the Spatial Frequency
              Spectrum ......................................... 23
      17.5.6  Vector Field Representation by Spatial
              Frequencies ...................................... 24
17.6  Evanescent Waves ......................................... 26
17.7  Approximative Solutions to the Wave Equation ............. 28
      17.7.1  Geometrical Optics and the Eikonal Equation ...... 28
      17.7.2  Paraxial Wave Equation ........................... 29
      17.7.3  Transport of Intensity ........................... 30
      17.7.4  Gaussian Beams ................................... 31
      17.7.5  Ray Equivalent of Gaussian Beams ................. 36
      17.7.6  Gaussian Beams in Two Dimensions ................. 37
17.8  Literature ............................................... 39

18    Scalar Diffraction ....................................... 41
18.1  Introduction ............................................. 42
18.2  KirchhofF Diffraction Integral ........................... 44
      18.2.1  Inconsistency of the KirchhofF Diffraction
              Integral ......................................... 48
18.3  1st and 2nd Rayleigh-Sommerfeld Diffraction Integral ..... 48
18.4  Two-dimensional Diffraction .............................. 50
18.5  Muygens Principle ........................................ 52
18.6  Fourier Space Formulation ................................ 54
18.7  Examples of Scalar Diffraction Patterns .................. 57
      18.7.1  Diffraction Fields Behind Slits .................. 57
      18.7.2  Diffraction by a Rectangular Aperture ............ 59
18.8  Fresnel Diffraction ...................................... 60
      18.8.1  Computation ...................................... 61
      18.8.2  Validity ......................................... 62
18.9  Coffin's Fresnel Diffraction Integral .................... 64
      18.9.1  Definition ....................................... 64
      18.9.2  Example .......................................... 67
18.10 Fraunhofer Diffraction ................................... 69
18.11 Grating Diffraction ...................................... 71
      18.11.1  Ronchi Grating .................................. 71
      18.11.2  The Sinusoidal Phase Grating and Surface
               Fabrication Errors .............................. 76
18.12 Scalar Diffraction at Dielectric Objects ................. 79
18.13 Babinet's Principle ...................................... 82
18.14 Scalar Scattering ........................................ 85
18.15 Boundary Diffraction Waves ............................... 89
      18.15.1 Geometrical Theory of Diffraction ................ 90
      18.15.2 An Empirical Boundary Diffraction Wave ........... 94
18.16 Literature ............................................... 96

19    Interference and Coherence ............................... 99
19.1  Basic Principles ........................................ 100
      19.1.1  Introduction .................................... 100
      19.1.2  Two-beam Interference and Double Slit
              Diffraction ..................................... 102
      19.1.3  Contributions of Different Points of the Light
              Source .......................................... 305
      19.1.4  The High-frequency Term ......................... 107
      19.1.5  The Low-frequency Term .......................... 108
      19.1.6  Different Light Source Points with Statistical
              Phase ........................................... 209
19.2  Mathematical Description of Coherence ................... 113
      19.2.1  Coherence Function .............................. 113
      19.2.2  Wigner Distribution Function .................... 116
      19.2.3  Moments of the Wigner Distribution Function ..... 120
      19.2.4  Smoothing of the Wigner Distribution Function
              and Diffraction Focus ........................... 121
      19.2.5  Wigner Distribution Function of Coherent
              Fields .......................................... 122
      19.2.6  Ambiguity Function .............................. 123
      19.2.7  The Characterizing Functions in their Context ... 125
19.3  Temporal Coherence ...................................... 126
      19.3.1  Superposition of Signals with Different
              Frequency ....................................... 326
      19.3.2  Spectral Distribution of a Light Source ......... 327
      19.3.3  Bandwidth-limited Signals ....................... 328
      19.3.4  Axial Coherence Length .......................... 330
      19.3.5  Thermal Light Sources ........................... 333
      19.3.6  Temporal Coherence in the Michelson
              Interferometer .................................. 334
19.4  Spatial Coherence ....................................... 335
      19.4.1  Introduction .................................... 335
      19.4.2  Propagation of the Coherence Function ........... 338
      19.4.3  Van Cittert-Zernike Theorem ..................... 240
      19.4.4  The Coherence Function of a Circular Source ..... 240
      19.4.5  Coherence Function behind a Double Slit ......... 243
      19.4.6  Propagation of the Wigner Distribution
              Function ........................................ 246
19.5  Gaussian Schell Beams ................................... 249
      19.5.1  Definition of Gaussian Schell Beams ............. 249
      19.5.2  Coherence and Wigner Functions of Gaussian"
              Schell Beams .................................... 154
      19.5.3  Basis Mode Expansion of Partial Coherent
              Fields .......................................... 256
19.6  Statistical Optics and Speckle .......................... 159
      19.6.1  Photon Statistics ............................... 259
      19.6.2  The Speckle Effect .............................. 262
      19.6.3  Speckle Parameters and Surface Structure ........ 263
      19.6.4  Computation of Speckle Effects .................. 265
      19.6.5  Speckle Reduction ............................... 269
19.7  Array Homogenizer ....................................... 272
      19.7.1  Setup of the System ............................. 272
      19.7.2  Pupil Filling ................................... 275
      19.7.3  Coherence Effects ............................... 276
      19.7.4  Example Calculation ............................. 277
19.8  Miscellaneous ........................................... 279
      19.8.1  General Coherence Length ........................ 279
      19.8.2  General Degree of Coherence ..................... 282
      19.8.3  Coherence and Polarization ...................... 283
19.9  Literature .............................................. 284

20    The Geometrical Optical Description and Incoherent
      Imaging ................................................. 287
20.1  Introduction ............................................ 288
20.2  Characteristic Functions ................................ 289
      20.2.1  Geometrical Optics and the Wave Equation ........ 289
      20.2.2  The Characteristic Functions .................... 291
      20.2.3  Geometrical-optical imaging ..................... 294
      20.2.4  The Canonical Pupil ............................. 296
      20.2.5  A Note on Diffractive Optical Elements .......... 299
20.3  The Ideal Wave-optical Image of a Point and
      Geometrical-optical Image Formation ..................... 200
      20.3.1  The Scalar Lьneburg Integral .................... 200
      20.3.2  Energy Discussions for Optical Imaging .......... 204
      20.3.3  The Airy Disc ................................... 206
      20.3.4  Incoherent Resolution ........................... 210
20.4  Aberrations of Optical Systems .......................... 211
      20.4.1  The Small-aberration Limit: The Strehl Ratio .... 211
      20.4.2  Expansion of the Wave-front Error into Zernike
              Polynomials ..................................... 212
      20.4.3  Point Images for Different Aberrations .......... 217
      20.4.4  Distortion, Defocus and Astigmatism ............. 219
      20.4.5  Spherical Aberrations Zg, Coma Z7 and Z8 ........ 220
      20.4.6  Line of Sight ................................... 221
      20.4.7  Wave Aberrations for Annular Pupils ............. 224
      20.4.8  Extended Zernike Expansion ...................... 227
20.5  Helmholtz-Lagrange Invariant and Phase-space
      Description ............................................. 231
      20.5.1  The Phase Space ................................. 231
      20.5.2  The Resolution Limit in the Space Dorrfliin
              and in the Spatial Frequency Domain ............. 234
      20.5.3  The Space-Bandwidth Product ..................... 236
20.6  Literature .............................................. 237

21    The Abbe Theory of Imaging .............................. 239
21.1  Introduction ............................................ 240
21.2  Phenomenological Description of Imaging ................. 244
      21.2.1  The Explanation of Image Formation According
              to Abbe and the Abbe Resolution ................. 244
      21.2.2  The Information About an Object Contained in
              an Image ........................................ 249
      21.2.3  Koehler Illumination and the Visibility ......... 252
      21.2.4  The Siedentopf Illumination Principle ........... 255
      21.2.5  Imaging with Different Colours .................. 259
      21.2.6  Aplanatic Correction and Geometrical Optics ..... 260
21.3  The Mathematical Description of Fourier Optical
      Imaging ................................................. 262
      21.3.1  Imaging with Uncorrelated Light Sources ......... 262
      21.3.2  Consideration of Magnification .................. 267
21.4  Coherence in Imaging .................................... 269
      21.4.1  The Coherent Image .............................. 269
      21.4.2  Incoherent Imaging .............................. 272
      21.4.3  One-Dimensional Incoherent Imaging .............. 273
      21.4.4  Systems with Rotational Symmetry ................ 275
      21.4.5  Conditions for Incoherent, Partially Coherent
              and Coherent Imaging ............................ 277
      21.4.6  Imaging with Correlated Light Sources ........... 280
21.5  Literature .............................................. 281

22    Coherence Theory of Optical Imaging ..................... 283
22.1  Introduction ............................................ 284
22.2  Theoretical Description of Partially Coherent Image
      Formation ............................................... 284
      22.2.1  Hopkins Transmission Cross Coefficient .......... 284
      22.2.2  Image Fidelity .................................. 287
      22.2.3  Hopkins Formalism for Periodic Objects .......... 288
      22.2.4  Aberrations in the Linear Grating Image ......... 293
22.3  The Coherence Function and the Coherence Transfer
      Function ................................................ 296
22.4  The Phase Space Description ............................. 300
      22.4.1  Transformation of Coherence and Wigner
              Distribution Function ........................... 300
      22.4.2  Propagation of the Wigner Distribution
              Function in Free Space .......................... 303
      22.4.3  Compilation of the Transformations .............. 307
22.5  Optical Imaging in the Presence of Aberrations .......... 309
      22.5.1  Linear Systems and Classification of
              Aberrations ..................................... 309
      22.5.2  Random Non-stationary Aberrations: Stray
              Light and Flare ................................. 314
22.6  Literature .............................................. 317

23    Three-dimensional Imaging ............................... 319
23.1  Introduction ............................................ 320
23.2  The Ewald Sphere and the Generalized Pupil .............. 321
      23.2.1  The Ewald Sphere ................................ 321
      23.2.2  The Generalized Aperture and the Three-
              dimensional Point-spread Function ............... 322
23.3  The Three-dimensional Transfer Function ................. 327
      23.3.1  Born Approximation and the Laue Equation ........ 327
      23.3.2  Dдndliker's Representation and the Shape of
              the Three-dimensional Transfer Function ......... 330
      23.3.3  Resolution, Depth Resolution and Depth of
              Focus ........................................... 335
      23.3.4  3D-Transfer Functions in Microscopy ............. 338
      23.3.5  Magnification and a Comment on Absolute
              Instruments ..................................... 340
23.4  Selected Examples of the Three-Dimensional Transfer
      Function ................................................ 343
      23.4.1  Transfer Function for Incoherent Imaging with
              a = 1 ........................................... 343
      23.4.2  Partial Coherent Image Examples ................. 344
      23.4.3  'Tayloring' of the 3D-Transfer Function ......... 346
      23.4.5  Influence of Aberrations ........................ 351
23.5  Literature .............................................. 352

24    Image Examples of Selected Objects ...................... 355
24.1  Introduction ............................................ 356
24.2  Two-point Resolution .................................... 356
      24.2.1  Incoherent Versus Coherent Two-point
              Resolution ...................................... 356
      24.2.2  Image of a Double Slit for Coherent and
              Incoherent Illumination ......................... 360
      24.2.3  Phase Shift and Oblique Illumination ............ 364
24.3  The Image of an Edge .................................... 365
      24.3.1  The Coherent Image of an Amplitude and Phase
              Edge ............................................ 365
      24.3.2  The Incoherent Image of an Amplitude Edge ....... 369
      24.3.3  Partially Coherent Edge Image ................... 370
      24.3.4  The Determination of the Optical Transfer
              Function from the Edge Image .................... 375
24.4  The Line Image .......................................... 376
      24.4.1  The Line Image of a Rotational-symmetrical
              Lens ............................................ 376
      24.4.2  Coherent Line or Slit Image ..................... 377
      24.4.3  Incoherent Line or Slit Image ................... 380
24.5  The Grating Image ....................................... 381
      24.5.1  The Coherent Linear Grating Image ............... 381
      24.5.2  The Coherent Grating Image with Aberrations ..... 384
      24.5.3  The Influence of the Coherence Parameter a on
              the Grating Image ............................... 386
      24.5.4  Influence of the Shape of the Effective Light
              Source on the Grating Image ..................... 389
      24.5.5  Wigner Distribution Function for Gratings,
              Talbot Effect and Propagation-invariant Fields .. 394
24.6  Pinhole Imaging and Quasi-point Sources ................. 399
      24.6.1  Introduction .................................... 399
      24.6.2  Incoherent Image of a Circular Object ........... 400
      24.6.3  Quasi-point Source .............................. 402
      24.6.4  Pinhole with Coherent Illumination .............. 404
      24.6.5  Pinhole with Partial Coherent Illumination ...... 405
      24.6.6  Defocusing Planes and Deconvolution ............. 406
24.7  Literature .............................................. 407

25    Special System Examples and Applications ................ 409
25.1  Introduction ............................................ 410
25.2  Point-spread Functions for Annular Pupils ............... 410
      25.2.1  Introduction .................................... 410
      25.2.2  Annular Pupils, Central Obscuration and Pupil
              Filters ......................................... 412
25.3  Point-spread Functions of Non-uniform Illuminated
      Pupils .................................................. 426
      25.3.1  Introduction .................................... 416
      25.3.2  General Gaussian Apodization .................... 427
      25.3.3  Gaussian Profile with Truncation ................ 428
25.4  Engineering of the Point-spread Function by Pupil
      Masks ................................................... 423
      25.4.1  Introduction .................................... 423
      25.4.2  Characterization of the Three-dimensional
              Point-spread Function ........................... 423
      25.4.3  Characterization of Extended Depth of Focus ..... 426
      25.4.4  Relation Between Axial and Transverse
              Resolution ...................................... 427
      25.4.5  Ambiguity Function as Defocussed Transfer
              Function ........................................ 429
      25.4.6  Image Multiplexing .............................. 430
      25.4.7  Fundamental Relationships ....................... 432
      25.4.8  Calculation of Masks ............................ 432
25.5  Special Pupil Masks ..................................... 433
      25.5.1  Introduction .................................... 433
      25.5.2  Phase Masks According to Toraldo ................ 434
      25.5.3  Logarithmic Phase Mask .......................... 435
      25.5.4  Chirped Ring Pupil .............................. 437
      25.5.5  Complex Filter Described by Zernike Expansions .. 439
      25.5.6  Cubic Phase Plates for Extended Depth of Focus .. 442
      25.5.7  Structured Illumination ......................... 447
25.6  Selected Practical Applications for Pupil Filtering
      Techniques .............................................. 450
      25.6.1  Phase Contrast Filtering, Dark-field
              Illumination .................................... 450
      25.6.2  Frequency Doubling .............................. 453
      25.6.3  Defect Filtering ................................ 455
      25.6.4  Ronchi Test ..................................... 456
25.7  Literature .............................................. 463

26    Polarization ............................................ 465
26.1  Introduction ............................................ 467
26.2  Polarization States ..................................... 467
      26.2.1  Representation of Polarization States ........... 468
      26.2.2  Jones Vector .................................... 468
      26.2.3  Ellipse of Polarization ......................... 470
      26.2.4  Orthogonal Jones Vectors ........................ 472
      26.2.5  Jones Vectors in Different Bases ................ 472
      26.2.6  Unpolarized Light ............................... 472
      26.2.7  Partial Polarization ............................ 473
      26.2.8  Polarization Matrix ............................. 473
      26.2.9  Stokes Vector ................................... 475
      26.2.10 Poincare Sphere ................................. 478
26.3  Jones Matrix ............................................ 479
      26.3.1  Definition ...................................... 479
      26.3.2  Jones Matrix Acting on a Jones Vector ........... 480
      26.3.3  Succession of Jones Matrices .................... 480
      26.3.4  Jones Matrix Acting on a Polarization Matrix .... 482
      26.3.5  Examples of Jones Matrices ...................... 481
      26.3.6  Rotated and Mirrored Jones Matrix ............... 482
      26.3.7  Jones Matrix for Different Basis Polarization
              States .......................................... 483
      26.3.8  Eigenpolarizations of a Jones Matrix ............ 483
      26.3.9  Jones Matrix of a Retarder ...................... 484
      26.3.10 Jones Matrix of a Partial Polarizer ............. 487
      26.3.11 Pauli's Spin Matrices ........................... 489
      26.3.12 Jones Matrix Decomposition ...................... 489
26.4  Mьller Matrix ........................................... 491
      26.4.1  Definition ...................................... 492
      26.4.2  Examples ........................................ 492
26.5  Mьller-Jones Matrix ..................................... 493
26.6  Light in Anisotropic Media .............................. 494
      26.6.1  Anisotropic Media ............................... 494
26.5  Principal Refractive Indices of an Anisotropic Medium
      Without Spatial Dispersion and Optical Activity ......... 495
      26.6.3  Fresnel Ellipsoid ............................... 496
      26.6.4  Index Ellipsoid ................................. 497
      26.6.5  Types of Birefringent Media ..................... 497
26.7  Eigenwaves in Anisotropic Media ......................... 502
      26.7.1  Plane Waves in Anistropic Media ................. 501
      26.7.2  Eigenwaves and their Polarization ............... 502
      26.7.3  Properties of the Eigenpolarizations ............ 506
      26.7.4  The Intersection Ellipse ........................ 506
26.8  Jones Matrix of Propagation ............................. 507
26.9  Jones Matrices of Propagation for Common Media .......... 508
      26.9.1  Eigenpolarizations and-values ................... 508
      26.9.2  Coordinate Systems .............................. 509
      26.9.3  Uniaxial Crystal ................................ 509
      26.9.4  Biaxial Crystal ................................. 510
      26.9.5  CaF2 with Spatial Dispersion at λ = 193 nm ...... 511
26.10 Beam-splitting in an Anisotropic Medium ................. 522
26.11 Examples of Polarization-optical Elements ............... 516
      26.11.1 Quarter-wave and Half-wave Retarder ............. 526
      26.11.2 Babinet-Soleil Compensator ...................... 526
      26.11.3 Faraday Rotator ................................. 528
      26.11.4 Brewster Plate .................................. 519
26.12 Literature .............................................. 520

27    Vector Diffraction ...................................... 523
27.1  Introduction ............................................ 524
27.2  Focus Computation for Polarized Fields .................. 525
      27.2.1  Geometry for Focus Computation .................. 525
      27.2.2  Richards-Wolf integral .......................... 526
      27.2.3  Plane Wave Expansion ............................ 531
      27.2.4  Focus Fields for Various Input Polarizations .... 533
27.3  Vector Kirchhoff Diffraction Integral ................... 538
27.4  Analytical Solutions .................................... 538
      27.4.1  Plane Interface: Fresnel's Equations ............ 540
      27.4.2  Diffraction at a Circular Cylinder .............. 542
      27.4.3  Mie Scattering .................................. 547
27.5  Numerical Methods for Arbitrary Structures .............. 553
27.6  Coupled Dipole Method ................................... 553
27.7  Integral Equation Approach and Moment Method ............ 555
      27.7.1  The Moment Method ............................... 555
      27.7.2  Form of Scattering Operator ..................... 556
      27.7.3  Scattering in Three-layer Medium ................ 557
27.8  Fourier Modal Method .................................... 563
      27.8.1  Theory .......................................... 563
      27.8.2  Diffraction Efficiency .......................... 568
27.9  Finite-difference Method ................................ 568
      27.9.1  Boundary Conditions ............................. 570
      27.9.2  Implicit Paraxial Wave Equation in Two
              Dimensions ...................................... 572
      27.9.3  Paraxial Wave Equation in Cylindrical
              Coordinates ..................................... 572
      27.9.4  AD I-formulation of the Paraxial Wave Equation
              in Three Dimensions ............................. 575
      27.9.5  Split-step-beam Propagation Method .............. 576
27.10 Rigorous Diffraction in Optical Imaging ................. 579
      27.10.1 Dielectrics and Metals .......................... 579
27.11 Simulation of Polarized Imaging by use of Rigorous
      Diffraction ............................................. 583
27.12 Literature .............................................. 587

28    Polarization and Optical Imaging ........................ 589
28.1  Introduction ............................................ 590
28.2  The Image-forming Field ................................. 590
28.3  Interference of Electromagnetic Waves ................... 592
      28.3.1  Two-beam Vector Interference .................... 592
      28.3.2  Contrast for High-NA, s- and p-polarization ..... 593
      28.3.3  Influence of Recording Medium ................... 594
      28.3.4  Vector Effect in Optical Microscopy ............. 595
      28.3.5  Vector Effect in Optical Lithography ............ 595
28.4  Polarized Ray Trace ..................................... 596
      28.4.1  Definition of Ray, Beam and Path ................ 597
      28.4.2  Ray-splitting at Anisotropic Elements ........... 597
      28.4.3  Refraction and Reflection at Birefringent
              Interfaces ...................................... 598
      28.4.4  The Single-path Approximation ................... 599
28.5  Optical Systems with Polarization Effects ............... 604
28.6  Polarized Imaging Model ................................. 605
      28.6.1  Scalar Image .................................... 606
      28.6.2  Vector Image for Completely Polarized
              Illumination .................................... 607
      28.6.3  Vector Image for Partially Polarized
              Illumination .................................... 609
28.7  Vector Point-spread Function ............................ 610
      28.7.1  VPSF for Complete Polarization .................. 610
      28.7.2  VPSF for Unpolarized Illumination ............... 611
28.8  Polarized Optical Transfer Function ..................... 612
      28.8.1  Polarized Illumination .......................... 612
      28.8.2  Unpolarized Illumination ........................ 622
28.9  Jones Matrix Pupil ...................................... 612
      28.9.1  Definition for Completely Polarized
              Illumination .................................... 613
      28.9.2  Separation of a Scalar Factor ................... 614
      28.9.3  Decomposition into Retardance and
              Diattenuation ................................... 615
      28.9.4  Example ......................................... 616
28.10 Jones Matrix Pupils in the Polarization Matrix
      Calculus ................................................ 617
28.11 Jones-matrix-based System Optimization .................. 619
28.10 Aberrations of the Transmitted Wavefront ................ 620
28.13 Jones-Zernike Wavefront Aberrations ..................... 621
      28.13.1 Principle of the Modal Characterization of
              a Jones Pupil ................................... 621
      28.13.2 Jones-Zernike Expansion ......................... 622
      28.13.3 Properties of the Jones-Zernike Polynomials ..... 623
28.14 Literature .............................................. 625

      Mathematical Appendix ................................... 627
A.l   Linear Systems .......................................... 629
A.2   Fourier Series and Fourier Integral ..................... 631
      A.2.1  Compilation of Basic Properties of the Fourier
             Transform ........................................ 632
      A.2.2  Special Functions and their Fourier Transforms ... 634
A.3   Convolution and Correlation ............................. 637
      A.3.1  Convolution ...................................... 637
      A.3.2  Correlation ...................................... 637
      A.3.3  Power Spectral Density and RMS Value ............. 638
A.4   Discrete Signals ........................................ 639
      A.4.1  The Sampling Theorem ............................. 639
      A.4.2  Leakage .......................................... 642
      A.4.3  Indexing of the Numerical Discrete Fast Fourier
             Transform ........................................ 642
A.5   z-Transform ............................................. 644
      A.5.1  Definition ....................................... 644
      A.5.2  Numerical Evaluation of the z-transform .......... 646
      A.5.3  Sine Interpolation ............................... 648
A.6   Hankel Transform ........................................ 648
      A.6.1  Definition ....................................... 648
      A.6.2  Numerical Computation ............................ 649
A.7   Practical Calculation of Diffraction Integrals .......... 655
      A.7.1  The Oscillation Problem .......................... 655
      A.7.2  Spatial and Spectral Resolution .................. 660
      A.7.3  Periodic Boundary Conditions ..................... 662
      A.7.4  x-z Sampling of the Ewald Sphere ................. 663
      A.7.5  Equivalent Diffraction Setups .................... 663
      A.7.6  Optimal Conditioning of the Fresnel Diffraction .. 666
      A.7.7  Numerical Algorithms ............................. 669
      A.7.8  Fresnel Integrals ................................ 672
A.8   Orthogonal Polynomials on Rectangular Domains ........... 675
      A.8.1  Chebyshev Polynomials ............................ 675
      A.8.2  One-dimensional Legendre Polynomials ............. 677
      A.8.3  Two-dimensional Chebyshev Polynomials ............ 678
      A.8.4  Legendre Polynomials in Two Dimensions ........... 679
A.9   Literature .............................................. 683

Index ......................................................... 685


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:24 2019. Размер: 35,988 bytes.
Посещение N 1605 c 27.05.2014