Bjorn A. Nonlinear potential theory on metric spaces (Zurich, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBjorn A. Nonlinear potential theory on metric spaces / A.Bjorn, J.Bjorn. - Zurich: Europ. mat. soc., 2011. - xii, 403 p. - (EMS tracts in mathematics; 17). - Bibliogr.: p.369-388. - Ind.: p.389-403. - ISBN 978-3-03719-099-9
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v
1  Newtonian spaces ............................................. 1
   1.1  The metric space X and some notation .................... 1
   1.2  Preliminaries ........................................... 3
   1.3  Upper gradients and the Newtonian space N1,p ............ 8
   1.4  The Sobolev capacity Cp ................................ 12
   1.5  p -weak upper gradients and modulus of curve families .. 15
   1.6  Banach space and ACCp .................................. 24
   1.7  Examples ............................................... 31
   1.8  Notes .................................................. 34
2  Minimal p-weak upper gradients .............................. 37
   2.1  Fuglede's lemma ........................................ 37
   2.2  Minimal p-weak upper gradients ......................... 40
   2.3  Calculus for p-weak upper gradients .................... 45
   2.4  The glueing lemma ...................................... 48
   2.5  N1,p(Ω) ................................................ 50
   2.6  Nloc1,p and Dlocp ....................................... 52 
   2.7  N01,p .................................................. 55
   2.8  Glocp .................................................. 58
   2.9  Dependence on p in gu .................................. 59
   2.10 Representation formulas for gu ......................... 61
   2.11 Notes .................................................. 64
3  Doubling measures ........................................... 65
   3.1  Doubling ............................................... 65
   3.2  The maximal function ................................... 68
   3.3  BMO and John-Nirenberg's lemma ......................... 70
   3.4  Consequences of John-Nirenberg's lemma ................. 75
   3.5  Gehring's lemma ........................................ 77
   3.6  Notes .................................................. 82
4  Poincare inequalities ....................................... 84
   4.1  Poincare inequalities .................................. 84
   4.2  Characterizations of Poincare inequalities ............. 88
   4.3  BiLipschitz invariance ................................. 89
   4.4  (q, p)-Pomcai6 inequalities ............................ 91
   4.5  Quasiconvexity and connectivity ........................ 99
   4.6  Poincare inequalities in quasiconvex spaces ........... 103
   4.7  Inner metric .......................................... 106
   4.8  The relation between L and λ .......................... 110
   4.9  Measurability ......................................... 113
   4.10 Notes ................................................. 113
5  Properties of Newtonian functions .......................... 116
   5.1  Density of Lipschitz functions ........................ 116
   5.2  Quasicontinuity of Newtonian functions ................ 123
   5.3  Continuity of Newtonian functions ..................... 134
   5.4  Density of Lipschitz functions in N01,p ............... 138
   5.5  Sobolev embeddings and inequalities ................... 141
   5.6  Lebesgue points for N1,p-functions .................... 147
   5.7  Notes ................................................. 150
6  Capacities ................................................. 154
   6.1  Mazur's lemma and its consequences .................... 154
   6.2  Properties of Cp in complete doubling p-Poincare
        spaces ................................................ 157
   6.3  The variational capacity capp ......................... 161
   6.4  Notes ................................................. 168
7  Superminimizers ............................................ 170
   7.1  Introduction to potential theory ...................... 170
   7.2  The obstacle problem .................................. 172
   7.3  Definition of (super)minimizers ....................... 178
   7.4  Convergence results for superminimizers ............... 183
   7.5  Notes ................................................. 189
8  Interior regularity ........................................ 191
   8.1  Weak Harnack inequalities for subminimizers ........... 191
   8.2  Weak Harnack inequalities for superminimizers ......... 197
   8.3  Holder continuity for λ-harmonic functions ............ 201
   8.4  The need for λ in Harnack's inequality ................ 205
   8.5  Lsc-regularized superminimizers ....................... 206
   8.6  Lsc-regularized solutions of obstacle problems ........ 209
   8.7  p-harmonic extensions ................................. 212
   8.8  A sharp weak Harnack inequality for superminimizers ... 213
   8.9  Notes ................................................. 215
9  Superharmonic functions .................................... 218
   9.1  Definition of superharmonic functions ................. 218
   9.2  Weak Harnack inequalities for superharmonic 
        functions ............................................. 220
   9.3  Lsc-regularity and the minimum principle .............. 222
   9.4  Characterizations ..................................... 226
   9.5  Convergence results for superharmonic functions ....... 229
   9.6  Harnack's convergence theorem for p-harmonic 
        functions ............................................. 233
   9.7  Comparison of sub- and superharmonic functions ........ 234
   9.8  New superharmonic functions from old .................. 235
   9.9  Integrability of superharmonic functions .............. 238
   9.10 Lebesgue points for superharmonic functions ........... 244
   9.11 Notes ................................................. 246
10 The Dirichlet problem for p-harmonic functions ............. 249
   10.1 Continuous boundary values ............................ 250
   10.2 The Kellogg property .................................. 251
   10.3 Perron solutions ...................................... 253
   10.4 Resolutivity of Newtonian functions ................... 255
   10.5 Resolutivity of continuous functions .................. 261
   10.6 Some consequences of resolutivity ..................... 263
   10.7 Resolutivity of semicontinuous functions .............. 265
   10.8 The /-harmonic measure ................................ 268
   10.9 Poisson modification .................................. 271
   10.10 The resolutivity problem ............................. 273
   10.11 Notes ................................................ 275
11 Boundary regularity ........................................ 277
   11.1 Barrier characterization of regular points ............ 277
   11.2 Boundary regularity for the obstacle problem .......... 280
   11.3 Characterizations of regularity ....................... 285
   11.4 The Wiener criterion .................................. 288
   11.5 Regularity componentwise .............................. 295
   11.6 Fine continuity ....................................... 298
   11.7 Notes ................................................. 301
12 Removable singularities .................................... 303
   12.1 Removability .......................................... 303
   12.2 Nonremovability ....................................... 309
   12.3 Removable sets with positive capacity ................. 312
   12.4 Nonunique removability ................................ 314
   12.5 Notes ................................................. 316
13 Irregular boundary points .................................. 318
   13.1 Semiregular and strongly irregular points ............. 318
   13.2 Characterizations of semiregular points ............... 320
   13.3 Characterizations of strongly irregular points ........ 325
   13.4 The sets of semiregular and of strongly irregular
        points ................................................ 327
   13.5 Notes ................................................. 328
14 Regular sets and applications thereof ...................... 329
   14.1 Regular sets .......................................... 329
   14.2 Wiener solutions ...................................... 331
   14.3 Classically superharmonic functions ................... 333
   14.4 Notes ................................................. 334
Appendices
A  Examples ................................................... 337
   A.l  N1,p in Euclidean spaces .............................. 337
   A.2  Weighted Sobolev spaces on Rn ......................... 340
   A.3  Uniform domains and power weights ..................... 348
   A.4  Glueing spaces together ............................... 349
   A.5  Graphs ................................................ 351
   A.6  Carnot-Caratheodory spaces and Heisenberg groups ...... 354
   A.7  Further examples ...................................... 357
   A.8  Notes ................................................. 358
В  Hajtasz-Sobolev and Cheeger-Sobolev spaces ................. 360
   B.1  Hajiasz-Sobolev spaces ................................ 360
   B.2  Cheeger-Sobolev spaces and differentiable structures .. 363
С  Quasiminimizers ............................................ 365

Bibliography .................................................. 369
Index ......................................................... 389


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:26:16 2019. Размер: 13,574 bytes.
Посещение N 1678 c 01.04.2014