Varadarajan V.S. Reflections on quanta, symmetries, and supersymmetries (New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVaradarajan V.S. Reflections on quanta, symmetries, and supersymmetries. - New York: Springer, 2011. - x, 236 p. - Incl. bibl. ref. - ISBN 978-1-4419-0666-3
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface ........................................................ ix
1  Prologue ..................................................... 1
   1.1  Reality and its description ............................. 1
   1.2  A quantum education and evolution ....................... 8
   References .................................................. 14
2  Quantum Algebra ............................................. 15
   2.1  The quantum algebra of Dirac ........................... 15
   2.2  The von Neumann perspective ............................ 19
   2.3  The measurement algebra of Schwinger ................... 23
   2.4  Weyl-Moyal algebra and the Moyal bracket ............... 35
   2.5  Quantum algebras over phase space ...................... 49
   2.6  Moshe Rato remembered .................................. 51
   References .................................................. 55
3  Probability in the quantum world ............................ 57
   3.1  The statistical interpretation of quantum theory ....... 57
   3.2  The uncertainty principle of Heisenberg ................ 62
   3.3  Hidden variables ....................................... 65
   3.4  EPR .................................................... 74
   3.5  Transition probabilities in the atom ................... 79
   3.6  Feynman path integrals and the Feynman-Kac formula ..... 81
   References .................................................. 90
4  Super geometry .............................................. 93
   4.1 The evolution of classical geometry ..................... 93
   4.2  Super geometry ........................................ 100
   4.3  The theory of super manifolds ......................... 105
   4.4  Super Lie groups ...................................... 116
   References ................................................. 118
5  Unitary representations of super Lie groups ................ 121
   5.1  Unitary representations of a super Lie group .......... 121
   5.2  Super imprimitivity theorem for even homogeneous 
        spaces ................................................ 129
   5.3  Super semidirect products and their unitary 
        irreducible representations ........................... 136
   5.4  Super Poincare Lie algebras and Lie groups ............ 143
   5.5  Unitary representations of super Poincare groups ...... 150
   5.6  Super particles and their multiplet structure ......... 152
   References ................................................. 153
6  Nonarchimedean physics ..................................... 155
   6.1  Planck scale and the Volovich hypothesis .............. 155
   6.2  Nonarchimedean symmetry groups and their multipliers .. 157
   6.3  Elementary particles over nonarchimedean fields ....... 165
   6.4  Nonarchimedean quantum field theory ................... 174
   References ................................................. 176
7  Differential equations with irregular singularities ........ 179
   7.1  Introduction .......................................... 180
   7.2  Reduction theory ...................................... 184
   7.3  Formal reduction at an irregular singularity and the
        theory of linear algebraic groups ..................... 187
   7.4  Analytic reduction theory: Stokes phenomenon .......... 193
   7.5  The Stokes sheaf and the scheme structure on H1(St) ... 195
   7.6  Reduction theory for families ......................... 197
   References ................................................. 204
8  Mackey, Harish-Chandra, and representation theory .......... 207
   8.1  George Mackey and his view of representation theory ... 207
   8.2  Harish-Chandra as I knew him .......................... 212
   8.3  Some reflections ...................................... 217
   8.4  Fourier analysis on semisimple groups ................. 223
   References ................................................. 235


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:58 2019. Размер: 7,570 bytes.
Посещение N 1134 c 19.11.2013