| Han J.-C. Gas turbine heat transfer and cooling technology / Je-Chin Han, Sandip Dutta, Srinath Ekkad. - 2nd ed. - Boca Raton: CRC Press/Taylor & Francis, 2013. - xvii, 869 p.: ill. - Incl. bibl. ref. - Ind.: p.845-869. - ISBN 978-1-4398-5568-3
|
Preface to the Second Edition ................................ xiii
Preface to the First Edition ................................... xv
Authors ...................................................... xvii
1 Fundamentals ................................................. 1
1.1 Need for Turbine Blade Cooling .......................... 1
1.1.1 Recent Development in Aircraft Engines ........... 1
1.1.2 Recent Development in Land-Based Gas Turbines .... 3
1.2 Turbine-Cooling Technology .............................. 5
1.2.1 Concept of Turbine Blade Cooling ................. 5
1.2.2 Typical Turbine-Cooling System ................... 7
1.3 Turbine Heat Transfer and Cooling Issues ............... 14
1.3.1 Turbine Blade Heat Transfer ..................... 14
1.3.2 Turbine Blade Internal Cooling .................. 18
1.3.3 Turbine Blade Film Cooling ...................... 21
1.3.4 Thermal Barrier Coating and Heat Transfer ....... 21
1.4 Structure of the Book .................................. 22
1.5 Review Articles and Book Chapters on Turbine Cooling
and Heat Transfer ...................................... 23
1.6 New Information from 2000 to 2010 ...................... 24
1.6.1 ASME Turbo Expo Conference CDs .................. 25
1.6.2 Book Chapters and Review Articles ............... 25
1.6.3 Structure of the Revised Book ................... 26
References ............................................. 26
2 Turbine Heat Transfer ....................................... 31
2.1 Introduction ........................................... 31
2.1.1 Combustor Outlet Velocity and Temperature
Profiles ........................................ 31
2.2 Turbine-Stage Heat Transfer ............................ 35
2.2.1 Introduction .................................... 35
2.2.2 Real Engine Turbine Stage ....................... 35
2.2.3 Simulated Turbine Stage ......................... 43
2.2.4 Time-Resolved Heat-Transfer Measurements
on a Rotor Blade ................................ 49
2.3 Cascade Vane Heat-Transfer Experiments ................. 52
2.3.1 Introduction .................................... 52
2.3.2 Effect of Exit Mach Number and Reynolds Number .. 53
2.3.3 Effect of Free-Stream Turbulence ................ 57
2.3.4 Effect of Surface Roughness ..................... 58
2.3.5 Annular Cascade Vane Heat Transfer .............. 62
2.4 Cascade Blade Heat Transfer ............................ 66
2.4.1 Introduction .................................... 66
2.4.2 Unsteady Wake-Simulation Experiments ............ 67
2.4.3 Wake-Affected Heat-Transfer Predictions ......... 74
2.4.4 Combined Effects of Unsteady Wake and Free-
Stream Turbulence ............................... 78
2.5 Airfoil Endwall Heat Transfer .......................... 83
2.5.1 Introduction .................................... 83
2.5.2 Description of the Flow Field ................... 83
2.5.3 Endwall Heat Transfer ........................... 86
2.5.4 Near-Endwall Heat Transfer ...................... 88
2.5.5 Engine Condition Experiments .................... 90
2.5.6 Effect of Surface Roughness ..................... 92
2.6 Turbine Rotor Blade Tip Heat Transfer .................. 94
2.6.1 Introduction .................................... 94
2.6.2 Blade Tip Region Flow Field and Heat Transfer ... 95
2.6.3 Flat-Blade Tip Heat Transfer .................... 98
2.6.4 Squealer- or Grooved-Blade-Tip Heat Transfer .... 99
2.7 Leading-Edge Region Heat Transfer ..................... 106
2.7.1 Introduction ................................... 106
2.7.2 Effect of Free-Stream Turbulence ............... 108
2.7.3 Effect of Leading-Edge Shape ................... 113
2.7.4 Effect of Unsteady Wake ........................ 114
2.8 Flat-Surface Heat Transfer ............................ 118
2.8.1 Introduction ................................... 118
2.8.2 Effect of Free-Stream Turbulence ............... 118
2.8.3 Effect of Pressure Gradient .................... 123
2.8.4 Effect of Streamwise Curvature ................. 124
2.8.5 Surface Roughness Effects ...................... 126
2.9 New Information from 2000 to 2010 ..................... 128
2.9.1 Endwall Heat Transfer .......................... 128
2.9.1.1 Endwall Contouring .................... 128
2.9.1.2 Leading-Edge Modifications to Reduce
Secondary Flows ....................... 130
2.9.1.3 Endwall Heat-Transfer Measurements .... 131
2.9.2 Turbine Tip and Casing Heat Transfer ........... 132
2.9.3 Vane-Blade Interactions ........................ 136
2.9.3.1 Cascade Studies ....................... 137
2.9.4 Deposition and Roughness Effects ............... 138
2.9.5 Combustor-Turbine Effects ...................... 139
2.9.6 Transition-Induced Effects and Modeling ........ 141
2.10 Closure ............................................... 143
References ............................................ 144
3 Turbine Film Cooling ....................................... 159
3.1 Introduction .......................................... 159
3.1.1 Fundamentals of Film Cooling ................... 159
3.2 Film Cooling on Rotating Turbine Blades ............... 162
3.3 Film Cooling on Cascade Vane Simulations .............. 169
3.3.1 Introduction ................................... 169
3.3.2 Effect of Film Cooling ......................... 171
3.3.3 Effect of Free-Stream Turbulence ............... 180
3.4 Film Cooling on Cascade Blade Simulations ............. 181
3.4.1 Introduction ................................... 181
3.4.2 Effect of Film Cooling ......................... 182
3.4.3 Effect of Free-Stream Turbulence ............... 185
3.4.4 Effect of Unsteady Wake ........................ 186
3.4.5 Combined Effect of Free-Stream Turbulence
and Unsteady Wakes ............................. 193
3.5 Film Cooling on Airfoil Endwalls ...................... 193
3.5.1 Introduction ................................... 193
3.5.2 Low-Speed Simulation Experiments ............... 193
3.5.3 Engine Condition Experiments ................... 200
3.5.4 Near-Endwall Film Cooling ...................... 201
3.6 Turbine Blade Tip Film Cooling ........................ 204
3.6.1 Introduction ................................... 204
3.6.2 Heat-Transfer Coefficient ...................... 205
3.6.3 Film Effectiveness ............................. 208
3.7 Leading-Edge Region Film Cooling ...................... 210
3.7.1 Introduction ................................... 210
3.7.2 Effect of Coolant-to-Mainstream Blowing Ratio .. 211
3.7.3 Effect of Free-Stream Turbulence ............... 213
3.7.4 Effect of Unsteady Wake ........................ 218
3.7.5 Effect of Coolant-to-Mainstream Density Ratio .. 218
3.7.6 Effect of Film Hole Geometry ................... 224
3.7.7 Effect of Leading-Edge Shape ................... 225
3.8 Flat-Surface Film Cooling ............................. 226
3.8.1 Introduction ................................... 226
3.8.2 Film-Cooled, Heat-Transfer Coefficient ......... 227
3.8.2.1 Effect of Blowing Ratio ............... 228
3.8.2.2 Effect of Coolant-to-Mainstream
Density Ratio ......................... 229
3.8.2.3 Effect of Mainstream Acceleration ..... 231
3.8.2.4 Effect of Hole Geometry ............... 233
3.8.3 Film-Cooling Effectiveness ..................... 239
3.8.3.1 Effect of Blowing Ratio ............... 241
3.8.3.2 Effect of Coolant-to-Mainstream
Density Ratio ......................... 242
3.8.3.3 Film Effectiveness Correlations ....... 244
3.8.3.4 Effect of Streamwise Curvature and
Pressure Gradient ..................... 250
3.8.3.5 Effect of High Free-Stream
Turbulence ............................ 255
3.8.3.6 Effect of Film Hole Geometry .......... 257
3.8.3.7 Effect of Coolant Supply Geometry ..... 260
3.8.3.8 Effect of Surface Roughness ........... 262
3.8.3.9 Effect of Gap Leakage ................. 262
3.8.3.10 Effect of Bulk Flow Pulsations ........ 267
3.8.3.11 Full-Coverage Film Cooling ............ 267
3.9 Discharge Coefficients of Turbine Cooling Holes ....... 269
3.10 Film-Cooling Effects on Aerodynamic Losses ............ 272
3.11 New Information from 2000 to 2010 ..................... 276
3.11.1 Film-Cooling-Hole Geometry ..................... 276
3.11.1.1 Effect of Cooling-Hole Exit Shape
and Geometry .......................... 276
3.11.1.2 Trenching of Holes .................... 281
3.11.1.3 Deposition and Blockage Effects on
Hole Exits ............................ 288
3.11.2 Endwall Film Cooling ........................... 289
3.11.3 Turbine Blade Tip Film Cooling ................. 299
3.11.4 Turbine Trailing Edge Film Cooling ............. 308
3.11.5 Airfoil Film Cooling ........................... 310
3.11.5.1 Vane Film Cooling ..................... 310
3.11.5.2 Blade Film Cooling .................... 311
3.11.5.3 Effect of Shocks ...................... 311
3.11.5.4 Effect of Superposition on Film
Effectiveness ......................... 312
3.11.6 Novel Film-Cooling Designs ..................... 313
3.12 Closure ............................................... 315
References ................................................. 315
4 Turbine Internal Cooling ................................... 329
4.1 Jet Impingement Cooling ............................... 329
4.1.1 Introduction ................................... 329
4.1.2 Heat-Transfer Enhancement by a Single Jet ...... 329
4.1.2.1 Effect of Jet-to-Target-Plate
Spacing ............................... 332
4.1.2.2 Correlation for Single Jet
Impingement Heat Transfer ............. 333
4.1.2.3 Effectiveness of Impinging Jets ....... 334
4.1.2.4 Comparison of Circular to Slot Jets ... 335
4.1.3 Impingement Heat Transfer in the Midchord
Region by Jet Array ............................ 336
4.1.3.1 Jets with Large Jet-to-Jet Spacing .... 337
4.1.3.2 Effect of Wall-to-Jet-Array Spacing ... 337
4.1.3.3 Cross-Flow Effect and Heat-Transfer
Correlation ........................... 339
4.1.3.4 Effect of Initial Cross-Flow .......... 345
4.1.3.5 Effect of Cross-Flow Direction on
Impingement Heat Transfer ............. 346
4.1.3.6 Effect of Coolant Extraction on
Impingement Heat Transfer ............. 350
4.1.3.7 Effect of Inclined Jets on Heat
Transfer .............................. 354
4.1.4 Impingement Cooling of the Leading Edge ........ 355
4.1.4.1 Impingement on a Curved Surface ....... 355
4.1.4.2 Impingement Heat Transfer in the
Leading Edge .......................... 356
4.2 Rib-Turbulated Cooling ................................ 363
4.2.1 Introduction ................................... 363
4.2.1.1 Typical Test Facility ................. 366
4.2.2 Effects of Rib Layouts and Flow Parameters on
Ribbed-Channel Heat Transfer ................... 368
4.2.2.1 Effect of Rib Spacing on the Ribbed
and Adjacent Smooth Sidewalls ......... 369
4.2.2.2 Angled Ribs ........................... 370
4.2.2.3 Effect of Channel Aspect Ratio with
Angled Ribs ........................... 371
4.2.2.4 Comparison of Different Angled Ribs ... 372
4.2.3 Heat-Transfer Coefficient and Friction Factor
Correlation .................................... 375
4.2.4 High-Performance Ribs .......................... 380
4.2.4.1 V-Shaped Rib .......................... 380
4.2.4.2 V-Shaped Broken Rib ................... 383
4.2.4.3 Wedge- and Delta-Shaped Rib ........... 384
4.2.5 Effect of Surface-Heating Condition ............ 387
4.2.6 Nonrectangular Cross-Section Channels .......... 390
4.2.7 Effect of High Blockage-Ratio Ribs ............. 403
4.2.8 Effect of Rib Profile .......................... 406
4.2.9 Effect of Number of Ribbed Walls ............... 413
4.2.10 Effect of a 180° Sharp Turn .................... 421
4.2.11 Detailed Heat-Transfer Coefficient
Measurements in a Ribbed Channel ............... 430
4.2.12 Effect of Film-Cooling Hole on Ribbed-Channel
Heat Transfer .................................. 437
4.3 Pin-Fin Cooling ....................................... 442
4.3.1 Introduction ................................... 442
4.3.2 Flow and Heat-Transfer Analysis with Single
Pin ............................................ 446
4.3.3 Pin Array and Correlation ...................... 451
4.3.4 Effect of Pin Shape on Heat Transfer ........... 459
4.3.5 Effect of Nonuniform Array and Flow
Convergence .................................... 464
4.3.6 Effect of Skewed Pin Array ..................... 467
4.3.1 Partial Pin Arrangements ....................... 470
4.3.8 Effect of Turning Flow ......................... 472
4.3.9 Pin-Fin Cooling with Ejection .................. 472
4.3.10 Effect of Missing Pin on Heat-Transfer
Coefficient .................................... 478
4.4 Compound and New Cooling Techniques ................... 479
4.4.1 Introduction ................................... 479
4.4.2 Impingement on Ribbed Walls .................... 479
4.4.3 Impingement on Pinned and Dimpled Walls ........ 484
4.4.4 Combined Effect of Ribbed Wall with Grooves .... 489
4.4.5 Combined Effect of Ribbed Wall with Pins and
Impingement Inlet Conditions ................... 491
4.4.6 Combined Effect of Swirl Flow and Ribs ......... 495
4.4.7 Impingement Heat Transfer with Perforated
Baffles ........................................ 500
4.4.8 Combined Effect of Swirl and Impingement ....... 504
4.4.9 Concept of Heat Pipe for Turbine Cooling ....... 505
4.4.10 New Cooling Concepts ........................... 509
4.5 New Information from 2000 to 2010 ..................... 510
4.5.1 Rib Turbulated Cooling ......................... 510
4.5.2 Impingement Cooling on Rough Surface ........... 514
4.5.3 Trailing Edge Cooling .......................... 517
4.5.4 Dimpled and Pin-Finned Channels ................ 518
4.5.5 Combustor Liner Cooling and Effusion Cooling ... 519
4.5.6 Innovative Cooling Approaches and Methods ...... 523
References ............................................ 525
5 Turbine Internal Cooling with Rotation ..................... 537
5.1 Rotational Effects on Cooling ......................... 537
5.2 Smooth-Wall Coolant Passage ........................... 538
5.2.1 Effect of Rotation on Flow Field ............... 538
5.2.2 Effect of Rotation on Heat Transfer ............ 545
5.2.2.1 Effect of Rotation Number ............. 546
5.2.2.2 Effect of Density Ratio ............... 547
5.2.2.3 Combined Effects of Rotation Number
and Density Ratio ..................... 548
5.2.2.4 Effect of Surface-Heating Condition ... 550
5.2.2.5 Effect of Rotation Number and Wall-
Heating Condition ..................... 554
5.3 Heat Transfer in a Rib-Turbulated Rotating Coolant
Passage ............................................... 556
5.3.1 Effect of Rotation on Rib-Turbulated Flow ...... 556
5.3.2 Effect of Rotation on Heat Transfer in
Channels with 90° Ribs ......................... 559
5.3.2.1 Effect of Rotation Number ............. 560
5.3.2.2 Effect of Wall-Heating Condition ...... 563
5.3.3 Effect of Rotation on Heat Transfer for
Channels with Angled (Skewed) Ribs ............. 565
5.3.3.1 Effect of Angled Ribs and Heating
Condition ............................. 567
5.3.3.2 Comparison of Orthogonal and Angled
Ribs .................................. 572
5.4 Effect of Channel Orientation with Respect to the
Rotation Direction on Both Smooth and Ribbed
Channels .............................................. 572
5.4.1 Effect of Rotation Number ...................... 572
5.4.2 Effect of Model Orientation and Wall-Heating
Condition ...................................... 574
5.5 Effect of Channel Cross Section on Rotating Heat
Transfer .............................................. 582
5.5.1 Triangular Cross Section ....................... 582
5.5.2 Rectangular Channel ............................ 585
5.5.3 Circular Cross Section ......................... 587
5.5.4 Two-Pass Triangular Duct ....................... 588
5.6 Different Proposed Correlation to Relate the Heat
Transfer with Rotational Effects ...................... 596
5.7 Heat-Mass-Transfer Analogy and Detail Measurements .... 603
5.8 Rotation Effects on Smooth-Wall Impingement Cooling ... 604
5.8.1 Rotation Effects on Leading-Edge Impingement
Cooling ........................................ 604
5.8.2 Rotation Effect on Midchord Impingement
Cooling ........................................ 613
5.8.3 Effect of Film-Cooling Hole .................... 618
5.9 Rotational Effects on Rib-Turbulated Wall
Impingement Cooling ................................... 619
5.10 New Information from 2000 to 2010 ..................... 623
5.10.1 Heat Transfer in Rotating Triangular Cooling
Channels ....................................... 625
5.10.2 Heat Transfer in Rotating Wedge-Shaped
Cooling Channels ............................... 633
5.10.3 Effect of Aspect Ratio and Rib Configurations
on Rotating Channel Heat Transfer .............. 643
5.10.4 Effect of High Rotation Number and Entrance
Geometry on Rectangular Channel Heat Transfer .. 666
References ............................................ 683
6 Experimental Methods ....................................... 689
6.1 Introduction .......................................... 689
6.2 Heat-Transfer Measurement Techniques .................. 689
6.2.1 Introduction ................................... 689
6.2.2 Heat Flux Gages ................................ 690
6.2.3 Thin-Foil Heaters with Thermocouples ........... 693
6.2.4 Copper Plate Heaters with Thermocouples ........ 697
6.2.5 Transient Technique ............................ 698
6.3 Mass-Transfer Analogy Techniques ...................... 699
6.3.1 Introduction ................................... 699
6.3.2 Naphthalene Sublimation Technique .............. 699
6.3.3 Foreign-Gas Concentration Sampling Technique ... 703
6.3.4 Swollen-Polymer Technique ...................... 705
6.3.5 Ammonia-Diazo Technique ........................ 706
6.3.6 Pressure-Sensitive Paint Techniques ............ 707
6.3.7 Thermographic Phosphors ........................ 710
6.4 Liquid Crystal Thermography ........................... 713
6.4.1 Steady-State Yellow-Band Tracking Technique .... 713
6.4.2 Steady-State HSI Technique ..................... 714
6.4.3 Transient HSI Technique ........................ 717
6.4.4 Transient Single-Color Capturing Technique ..... 719
6.5 Flow and Thermal Field Measurement Techniques ......... 726
6.5.1 Introduction ................................... 726
6.5.2 Five-Hole Probe/Thermocouples .................. 726
6.5.3 Hot-Wire/Cold-Wire Anemometry .................. 728
6.5.4 Laser Doppler Velocimetry ...................... 729
6.5.5 Particle Image Velocimetry ..................... 731
6.5.6 Laser Holographic Interferometry ............... 734
6.5.7 Surface Visualization .......................... 734
6.6 New Information from 2000 to 2010 ..................... 739
6.6.1 Transient Thin-Film Heat Flux Gages ............ 739
6.6.2 Advanced Liquid Crystal Thermography ........... 743
6.6.3 Infrared Thermography .......................... 746
6.6.4 Pressure-Sensitive Paint ....................... 749
6.6.5 Temperature-Sensitive Paint .................... 755
6.6.6 Flow and Thermal Field Measurements ............ 759
6.7 Closure ............................................... 761
References ............................................ 761
7 Numerical Modeling ......................................... 771
7.1 Governing Equations and Turbulence Models ............. 771
7.1.1 Introduction ................................... 771
7.1.2 Governing Equations ............................ 772
7.1.3 Turbulence Models .............................. 773
7.1.3.1 Standard k-e Model .................... 773
7.1.3.2 Low-Re k-e Model ...................... 774
7.1.3.3 Two-Layer k-e Model ................... 775
7.1.3.4 k-a Model ............................. 775
7.1.3.5 Baldwin-Lomax Model ................... 776
7.1.3.6 Second-Moment Closure Model ........... 777
7.1.3.7 Algebraic Closure Model ............... 777
7.2 Numerical Prediction of Turbine Heat Transfer ......... 779
7.2.1 Introduction ................................... 779
7.2.2 Prediction of Turbine Blade/Vane Heat
Transfer ....................................... 779
7.2.3 Prediction of the Endwall Heat Transfer ........ 785
7.2.4 Prediction of Blade Tip Heat Transfer .......... 787
7.3 Numerical Prediction of Turbine Film Cooling .......... 789
7.3.1 Introduction ................................... 789
7.3.2 Prediction of Flat-Surface Film Cooling ........ 791
7.3.3 Prediction of Leading-Edge Film Cooling ........ 796
7.3.4 Prediction of Turbine Blade Film Cooling ....... 798
7.4 Numerical Prediction of Turbine Internal Cooling ...... 799
7.4.1 Introduction ................................... 799
7.4.2 Effect of Rotation ............................. 799
7.4.3 Effect of 180c Turn ............................ 803
7.4.4 Effect of Transverse Ribs ...................... 809
7.4.5 Effect of Angled Ribs .......................... 809
7.4.6 Effect of Rotation on Channel Shapes ........... 815
7.4.7 Effect of Coolant Extraction ................... 818
7.5 New Information from 2000 to 2010 ..................... 820
7.5.1 CFD for Turbine Film Cooling ................... 820
7.5.2 CFD for Turbine Internal Cooling ............... 823
7.5.3 CFD for Conjugate Heat Transfer and Film
Cooling ........................................ 825
7.5.4 CFD for Turbine Heat Transfer .................. 829
References ............................................ 830
8 Final Remarks .............................................. 841
8.1 Turbine Heat Transfer and Film Cooling ................ 841
8.2 Turbine Internal Cooling with Rotation ................ 841
8.3 Turbine Edge Heat Transfer and Cooling ................ 842
8.4 New Information from 2000 to 2010 ..................... 842
8.5 Closure ............................................... 843
Index ......................................................... 845
|
|