McCleary J. Geometry from a differentiable viewpoint (Cambridge, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMcCleary J. Geometry from a differentiable viewpoint. - 2nd ed. - Cambridge: Cambridge University Press, 2013. - xv, 357 p.: ill., maps. - Bibliogr.: p.341-349. - Indexes: p.351-357. - ISBN 978-0-521-11607-7
 

Место хранения: 02 | Отделение ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
Preface to the second edition .................................. ix
Introduction ................................................... xi

                             Part A
         Prelude and themes: Synthetic methods and results
1  Spherical geometry ........................................... 3
2  Euclid ...................................................... 12
   Euclid's theory of parallels ................................ 19
   Appendix: The Elements: Book I .............................. 24
3  The theory of parallels ..................................... 27
   Uniqueness of parallels ..................................... 28
   Equidistance and boundedness of parallels ................... 29
   On the angle sum of a triangle .............................. 31
   Similarity of triangles ..................................... 34
   The work of Saccheri ........................................ 37
4  Non-Euclidean geometry ...................................... 43
   The work of Gauss ........................................... 43
   The hyperbolic plane ........................................ 47
   Digression: Neutral space ................................... 55
   Hyperbolic space ............................................ 62
   Appendix: The Elements: Selections from Book XI ............. 72

                             Part B
                Development: Differential geometry
5  Curves in the plane ......................................... 77
   Early work on plane curves (Huygens, Leibniz, Newton, and
   Euler) ...................................................... 81
   The tractrix ................................................ 84
   Oriented curvature .......................................... 86
   Involutes and evolutes ...................................... 89
6  Curves in space ............................................. 99
   Appendix: On Euclidean rigid motions ....................... 110
7  Surfaces ................................................... 116
   The tangent plane .......................................... 124
   The first fundamental form ................................. 128
   Lengths, angles, and areas ................................. 130
   jbu Map projections ........................................ 138
   Stereographic projection ................................... 143
   Central (gnomonic) projection .............................. 147
   Cylindrical projections .................................... 148
   Sinusoidal projection ...................................... 152
   Azimuthal projection ....................................... 153
8  Curvature for surfaces ..................................... 156
   Euler's work on surfaces ................................... 156
   The Gauss map .............................................. 159
9  Metric equivalence of surfaces ............................. 171
   Special coordinates ........................................ 179
10 Geodesies .................................................. 185
   Euclid revisited I: The Hopf-Rinow Theorem ................. 195
11 The Gauss-Bonnet Theorem ................................... 201
   Euclid revisited II: Uniqueness of lines ................... 205
   Compact surfaces ........................................... 207
   A digression on curves ..................................... 211
12 Constant-curvature surfaces ................................ 218
   Euclid revisited III: Congruences .......................... 223
   The work of Minding ........................................ 224
   Hilbert's Theorem .......................................... 231

                             Part C
                     Recapitulation and coda
13 Abstract surfaces .......................................... 237
14 Modeling the non-Euclidean plane ........................... 251
   The Beltrami disk .......................................... 255
   The Poincare disk .......................................... 262
   The Poincare half-plane .................................... 265
15 Epilogue: Where from here? ................................. 282
   Manifolds (differential topology) .......................... 283
   Vector and tensor fields ................................... 287
   Metrical relations (Riemannian manifolds) .................. 289
   Curvature .................................................. 294
   Covariant differentiation .................................. 303
   Riemann's Habilitationsvortrag: On the hypotheses which
   lie at the foundations of geometry ......................... 313
   Solutions to selected exercises ............................ 325

Bibliography .................................................. 341
Symbol index .................................................. 351
Name index .................................................... 352
Subject index ................................................. 354


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:46 2019. Размер: 8,607 bytes.
Посещение N 1441 c 05.11.2013