Numerical recipes: the art of scientific computing (New York; Cambridge, 2007). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNumerical recipes: the art of scientific computing / W.H.Press et al. - 3rd ed. - New York; Cambridge: Cambridge University Press, 2007. - xxi, 1235 p. - Ind.: p.1195-1235. - ISBN 978-0-521-88068-8
 

Оглавление / Contents
 
Preface to the Third Edition (2007) ............................ xi
Preface to the Second Edition (1992) .......................... xiv
Preface to the First Edition (1985) .......................... xvii
License and Legal Information ................................. xix
1  Preliminaries ................................................ 1
   1.0  Introduction ............................................ 1
   1.1  Error, Accuracy, and Stability .......................... 8
   1.2  С Family Syntax ........................................ 12
   1.3  Objects, Classes, and Inheritance ...................... 17
   1.4  Vector and Matrix Objects .............................. 24
   1.5  Some Further Conventions and Capabilities .............. 30
2  Solution of Linear Algebraic Equations ...................... 37
   2.0  Introduction ........................................... 37
   2.1  Gauss-Jordan Elimination ............................... 41
   2.2  Gaussian Elimination with Backsubstitution ............. 46
   2.3  LU Decomposition and Its Applications .................. 48
   2.4  Tridiagonal and Band-Diagonal Systems of Equations ..... 56
   2.5  Iterative Improvement of a Solution to Linear
        Equations .............................................. 61
   2.6  Singular Value Decomposition ........................... 65
   2.7  Sparse Linear Systems .................................. 75
   2.8  Vandermonde Matrices and Toeplitz Matrices ............. 93
   2.9  Cholesky Decomposition ................................ 100
   2.10 QR Decomposition ...................................... 102
   2.11 Is Matrix Inversion an N3 Process? .................... 106
3  Interpolation and Extrapolation ............................ 110
   3.0  Introduction .......................................... 110
   3.1  Preliminaries: Searching an Ordered Table ............. 114
   3.2  Polynomial Interpolation and Extrapolation ............ 118
   3.3  Cubic Spline Interpolation ............................ 120
   3.4  Rational Function Interpolation and Extrapolation ..... 124
   3.5  Coefficients of the Interpolating Polynomial .......... 129
   3.6  Interpolation on a Grid in Multidimensions ............ 132
   3.7  Interpolation on Scattered Data in Multidimensions .... 139
   3.8  Laplace Interpolation ................................. 150
4  Integration of Functions ................................... 155
   4.0  Introduction .......................................... 155
   4.1  Classical Formulas for Equally Spaced Abscissas ....... 156
   4.2  Elementary Algorithms ................................. 162
   4.3  Romberg Integration ................................... 166
   4.4  Improper Integrals .................................... 167
   4.5  Quadrature by Variable Transformation ................. 172
   4.6  Gaussian Quadratures and Orthogonal Polynomials ....... 179
   4.7  Adaptive Quadrature ................................... 194
   4.8  Multidimensional Integrals ............................ 196
5  Evaluation of Functions .................................... 201
   5.0  Introduction .......................................... 201
   5.1  Polynomials and Rational Functions .................... 201
   5.2  Evaluation of Continued Fractions ..................... 206
   5.3  Series and Their Convergence .......................... 209
   5.4  Recurrence Relations and Clenshaw's Recurrence
        Formula ............................................... 219
   5.5  Complex Arithmetic .................................... 225
   5.6  Quadratic and Cubic Equations ......................... 227
   5.7  Numerical Derivatives ................................. 229
   5.8  Chebyshev Approximation ............................... 233
   5.9  Derivatives or Integrals of a Chebyshev-Approximated
        Function .............................................. 240
   5.10 Polynomial Approximation from Chebyshev Coefficients .. 241
   5.11 Economization of Power Series ......................... 243
   5.12 Pade Approximants ..................................... 245
   5.13 Rational Chebyshev Approximation ...................... 247
   5.14 Evaluation of Functions by Path Integration ........... 251
6  Special Functions .......................................... 255
   6.0  Introduction .......................................... 255
   6.1  Gamma Function, Beta Function, Factorials, Binomial
        Coefficients .......................................... 256
   6.2  Incomplete Gamma Function and Error Function .......... 259
   6.3  Exponential Integrals ................................. 266
   6.4  Incomplete Beta Function .............................. 270
   6.5  Bessel Functions of Integer Order ..................... 274
   6.6  Bessel Functions of Fractional Order, Airy 
        Functions, Spherical Bessel Functions ................. 283
   6.7  Spherical Harmonics ................................... 292
   6.8  Fresnel Integrals, Cosine and Sine Integrals .......... 297
   6.9  Dawson's Integral ..................................... 302
   6.10 Generalized Fermi-Dirac Integrals ..................... 304
   6.11 Inverse of the Function x log(x) ...................... 307
   6.12 Elliptic Integrals and Jacobian Elliptic Functions .... 309
   6.13 Hypergeometric Functions .............................. 318
   6.14 Statistical Functions ................................. 320
7  Random Numbers ............................................. 340
   7.0  Introduction .......................................... 340
   7.1  Uniform Deviates ...................................... 341
   7.2  Completely Hashing a Large Array ...................... 358
   7.3  Deviates from Other Distributions ..................... 361
   7.4  Multivariate Normal Deviates .......................... 378
   7.5  Linear Feedback Shift Registers ....................... 380
   7.6  Hash Tables and Hash Memories ......................... 386
   7.7  Simple Monte Carlo Integration ........................ 397
   7.8  Quasi- (that is, Sub-) Random Sequences ............... 403
   7.9  Adaptive and Recursive Monte Carlo Methods ............ 410
8  Sorting and Selection ...................................... 419
   8.0  Introduction .......................................... 419
   8.1  Straight Insertion and Shell's Method ................. 420
   8.2  Quicksort ............................................. 423
   8.3  Heapsort .............................................. 426
   8.4  Indexing and Ranking .................................. 428
   8.5  Selecting the Mth Largest ............................. 431
   8.6  Determination of Equivalence Classes .................. 439
9  Root Finding and Nonlinear Sets of Equations ............... 442
   9.0  Introduction .......................................... 442
   9.1  Bracketing and Bisection .............................. 445
   9.2  Secant Method, False Position Method, and Ridders'
        Method ................................................ 449
   9.3  Van Wijngaarden-Dekker-Brent Method ................... 454
   9.4  Newton-Raphson Method Using Derivative ................ 456
   9.5  Roots of Polynomials .................................. 463
   9.6  Newton-Raphson Method for Nonlinear Systems of 
        Equations ............................................. 473
   9.7  Globally Convergent Methods for Nonlinear Systems of
        Equations ............................................. 477
10 Minimization or Maximization of Functions .................. 487
   10.0 Introduction .......................................... 487
   10.1 Initially Bracketing a Minimum ........................ 490
   10.2 Golden Section Search in One Dimension ................ 492
   10.3 Parabolic Interpolation and Brent's Method in One 
        Dimension ............................................. 496
   10.4 One-Dimensional Search with First Derivatives ......... 499
   10.5 Downhill Simplex Method in Multidimensions ............ 502
   10.6 Line Methods in Multidimensions ....................... 507
   10.7 Direction Set (Powell's) Methods in Multidimensions ... 509
   10.8 Conjugate Gradient Methods in Multidimensions ......... 515
   10.9 Quasi-Newton or Variable Metric Methods in
        Multidimensions ....................................... 521
   10.10 Linear Programming: The Simplex Method ............... 526
   10.11 Linear Programming: Interior-Point Methods ........... 537
   10.12 Simulated Annealing Methods .......................... 549
   10.13 Dynamic Programming .................................. 555
11 Eigensystems ............................................... 563
   11.0 Introduction .......................................... 563
   11.1 Jacobi Transformations of a Symmetric Matrix .......... 570
   11.2 Real Symmetric Matrices ............................... 576
   11.3 Reduction of a Symmetric Matrix to Tridiagonal Form:
        Givens and Householder Reductions ..................... 578
   11.4 Eigenvalues and Eigenvectors of a Tridiagonal Matrix .. 583
   11.5 Hermitian Matrices .................................... 590
   11.6 Real Nonsymmetric Matrices ............................ 590
   11.7 The QR Algorithm for Real Hessenberg Matrices ......... 596
   11.8 Improving Eigenvalues and/or Finding Eigenvectors 
        by Inverse Iteration .................................. 597
12 Fast Fourier Transform ..................................... 600
   12.0 Introduction .......................................... 600
   12.1 Fourier Transform of Discretely Sampled Data .......... 605
   12.2 Fast Fourier Transform (FFT) .......................... 608
   12.3 FFT of Real Functions ................................. 617
   12.4 Fast Sine and Cosine Transforms ....................... 620
   12.5 FFT in Two or More Dimensions ......................... 627
   12.6 Fourier Transforms of Real Data in Two and Three 
        Dimensions ............................................ 631
   12.7 External Storage or Memory-Local FFTs ................. 637
13 Fourier and Spectral Applications .......................... 640
   13.0 Introduction .......................................... 640
   13.1 Convolution and Deconvolution Using the FFT ........... 641
   13.2 Correlation and Autocorrelation Using the FFT ......... 648
   13.3 Optimal (Wiener) Filtering with the FFT ............... 649
   13.4 Power Spectrum Estimation Using the FFT ............... 652
   13.5 Digital Filtering in the Time Domain .................. 667
   13.6 Linear Prediction and Linear Predictive Coding ........ 673
   13.7 Power Spectrum Estimation by the Maximum Entropy
        (All-Poles) Method .................................... 681
   13.8 Spectral Analysis of Unevenly Sampled Data ............ 685
   13.9 Computing Fourier Integrals Using the FFT ............. 692
   13.10 Wavelet Transforms ................................... 699
   13.11 Numerical Use of the Sampling Theorem ................ 717
14 Statistical Description of Data ............................ 720
   14.0 Introduction .......................................... 720
   14.1 Moments of a Distribution: Mean, Variance, Skewness,
        and So Forth .......................................... 721
   14.2 Do Two Distributions Have the Same Means or
        Variances? ............................................ 726
   14.3 Are Two Distributions Different? ...................... 730
   14.4 Contingency Table Analysis of Two Distributions ....... 741
   14.5 Linear Correlation .................................... 745
   14.6 Nonparametric or Rank Correlation ..................... 748
   14.7 Information-Theoretic Properties of Distributions ..... 754
   14.8 Do Two-Dimensional Distributions Differ? .............. 762
   14.9 Savitzky-Golay Smoothing Filters ...................... 766
15 Modeling of Data ........................................... 773
   15.0 Introduction .......................................... 773
   15.1 Least Squares as a Maximum Likelihood Estimator ....... 776
   15.2 Fitting Data to a Straight Line ....................... 780
   15.3 Straight-Line Data with Errors in Both Coordinates .... 785
   15.4 General Linear Least Squares .......................... 788
   15.5 Nonlinear Models ...................................... 799
   15.6 Confidence Limits on Estimated Model Parameters ....... 807
   15.7 Robust Estimation ..................................... 818
   15.8 Markov Chain Monte Carlo .............................. 824
   15.9 Gaussian Process Regression ........................... 836
16 Classification and Inference ............................... 840
   16.0 Introduction .......................................... 840
   16.1 Gaussian Mixture Models and k-Means Clustering ........ 842
   16.2 Viterbi Decoding ...................................... 850
   16.3 Markov Models and Hidden Markov Modeling .............. 856
   16.4 Hierarchical Clustering by Phylogenetic Trees ......... 868
   16.5 Support Vector Machines ............................... 883
17 Integration of Ordinary Differential Equations ............. 899
   17.0 Introduction .......................................... 899
   17.1 Runge-Kutta Method .................................... 907
   17.2 Adaptive Stepsize Control for Runge-Kutta ............. 910
   17.3 Richardson Extrapolation and the Bulirsch-Stoer
        Method ................................................ 921
   17.4 Second-Order Conservative Equations ................... 928
   17.5 Stiff Sets of Equations ............................... 931
   17.6 Multistep, Multivalue, and Predictor-Corrector 
        Methods ............................................... 942
   17.7 Stochastic Simulation of Chemical Reaction Networks ... 946
18 Two-Point Boundary Value Problems .......................... 955
   18.0 Introduction .......................................... 955
   18.1 The Shooting Method ................................... 959
   18.2 Shooting to a Fitting Point ........................... 962
   18.3 Relaxation Methods .................................... 964
   18.4 A Worked Example: Spheroidal Harmonics ................ 971
   18.5 Automated Allocation of Mesh Points ................... 981
   18.6 Handling Internal Boundary Conditions or Singular 
        Points ................................................ 983
19 Integral Equations and Inverse Theory ...................... 986
   19.0 Introduction .......................................... 986
   19.1 Fredholm Equations of the Second Kind ................. 989
   19.2 Volterra Equations .................................... 992
   19.3 Integral Equations with Singular Kernels .............. 995
   19.4 Inverse Problems and the Use of A Priori 
        Information .......................................... 1001
   19.5 Linear Regularization Methods ........................ 1006
   19.6 Backus-Gilbert Method ................................ 1014
19 Maximum Entropy Image Restoration ......................... 1016
20 Partial Differential Equations ............................ 1024
   20.0 Introduction ......................................... 1024
   20.1 Flux-Conservative Initial Value Problems ............. 1031
   20.2 Diffusive Initial Value Problems ..................... 1043
   20.3 Initial Value Problems in Multidimensions ............ 1049
   20.4 Fourier and Cyclic Reduction Methods for Boundary 
        Value Problems ....................................... 1053
   20.5 Relaxation Methods for Boundary Value Problems ....... 1059
   20.6 Multigrid Methods for Boundary Value Problems ........ 1066
   20.7 Spectral Methods ..................................... 1083
21 Computational Geometry .................................... 1097
   21.0 Introduction ......................................... 1097
   21.1 Points and Boxes ..................................... 1099
   21.2 KD Trees and Nearest-Neighbor Finding ................ 1101
   21.3 Triangles in Two and Three Dimensions ................ 1111
   21.4 Lines, Line Segments, and Polygons ................... 1117
   21.5 Spheres and Rotations ................................ 1128
   21.6 Triangulation and Delaunay Triangulation ............. 1131
   21.7 Applications of Delaunay Triangulation ............... 1141
   21.8 Quadtrees and Octrees: Storing Geometrical Objects ... 1149
22 Less-Numerical Algorithms ................................. 1160
   22.0 Introduction ......................................... 1160
   22.1 Plotting Simple Graphs ............................... 1160
   22.2 Diagnosing Machine Parameters ........................ 1163
   22.3 Gray Codes ........................................... 1166
   22.4 Cyclic Redundancy and Other Checksums ................ 1168
   22.5 Huffman Coding and Compression of Data ............... 1175
   22.6 Arithmetic Coding .................................... 1181
   22.7 Arithmetic at Arbitrary Precision .................... 1185
Index ........................................................ 1195


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:42 2019. Размер: 21,198 bytes.
Посещение N 1599 c 29.10.2013