Editors's Preface .......................................... ХХХIII
Foreword ..................................................... XXXV
Henning Hopf
Foreword ..................................................... XXXV
Paul T. Anastas
List of Contributors ........................................ XXXIX
Volume 2
Part I Biobased Product Family Trees
Carbohydrate-based Product Lines
1 The Key Sugars of Biomass: Availability, Present
Non-Food Uses and Potential Future Development Lines ..... 3
Frieder W. Lichtenthaler
1.1 Introduction ............................................... 3
1.2 Availability of Mono- and Disaccharides .................... 4
1.3 Current Non-Food Industrial Uses of Sugars ................. 7
1.3.1 Ethanol ............................................. 7
1.3.2 Furfural ............................................ 8
1.3.3 D-Sorbitol (≡ D-Glucitol) ........................... 9
1.3.4 Lactic Acid → Polylactic Acid (PLA) ................ 10
1.3.5 Sugar-based Surfactants ............................ 21
1.3.6 'Sorbitan' Esters .................................. 11
1.3.7 N-Methyl-N-acyl-glucamides (NMGA) .................. 12
1.3.8 Alkylpolyglucosides (APG) .......................... 22
1.3.9 Sucrose Fatty Acid Monoesters ...................... 13
1.3.10 Pharmaceuticals and Vitamins ....................... 14
1.4 Toward Further Sugar-based Chemicals: Potential
Development Lines ......................................... 14
1.4.1 Furan Compounds .................................... 26
1.4.1.1 5-Hydroxymethylfurfural (HMF) ............. 26
1.4.1.2 5-(Glucosyloxymethyl)furfural (GMF) ....... 27
1.4.1.3 Furans with a Tetrahydroxybutyl
Side-chain ................................ 29
1.4.2 Pyrones and Dihydropyranones ....................... 20
1.4.3 Sugar-derived Unsaturated N-Heterocycles ........... 24
1.4.1.4 Pyrroles .................................. 24
1.4.1.5 Pyrazoles ................................. 26
1.4.1.6 Imidazoles ................................ 27
1.4.1.7 3-Pyridinols .............................. 28
1.4.1.8 Quinoxalines .............................. 28
1.4.4 Toward Sugar-based Aromatic Chemicals .............. 29
1.4.5 Microbial Conversion of Six-carbon Sugars into
Simple Carboxylic Acids and Alcohols ............... 32
1.4.5.1 Carboxylic Acids .......................... 34
1.4.5.2 Potential Sugar-based Alcohol
Commodities Obtained by Microbial
Conversions ............................... 36
1.4.6 Chemical Conversion of Sugars into Carboxylic
Acids .............................................. 37
1.4.7 Biopolymers from Polymerizable Sugar Derivatives ... 40
1.4.7.1 Synthetic Biopolyesters ................... 41
1.4.7.2 Microbial Polyesters ...................... 44
1.4.7.3 Polyamides ................................ 45
1.4.7.4 Sugar-based Olefinic Polymers
("Polyvinylsaccharides") .................. 47
1.5 Conclusion ........................................... 49
References ................................................ 52
2 Industrial Starch Platform - Status quo of Production,
Modification and Application .............................. 62
Dietmar R. Crüll, Franz Jetzinger, Martin Kozich,
Marnik M. Wastyn, and Robert Wittenberger
2.1 Introduction .............................................. 61
2.1.1 History of Starch .................................. 61
2.1.2 History of Industrial Starch Production ............ 62
2.1.3 History of Starch Modification ..................... 62
2.2 Raw Material for Starch Production ........................ 63
2.3 Industrial Production of Starch ........................... 65
2.3.1 Maize and Waxy Maize ............................... 66
2.3.2 Wheat .............................................. 66
2.3.3 Potato ............................................. 69
2.3.4 Tapioca ............................................ 70
2.3.5 Other Starches ..................................... 71
2.4 Properties of Commercial Starches ......................... 72
2.5 Modification of Starch Water .............................. 76
2.5.1 Modification Technology ............................ 76
2.5.1.1 Slurry Process (Heterogeneous
Conditions) ............................... 76
2.5.1.2 Dry Reactions ............................. 77
2.5.1.3 Paste Reactions (Homogeneous Conditions) .. 77
2.5.1.4 Extrusion Cooking ......................... 77
2.5.2 Types of Starch Modification ....................... 78
2.5.2.1 Physical Modification ..................... 78
2.5.2.2 Degraded Starches ......................... 79
2.5.2.3 Chemical Modification ..................... 80
2.6 Application of Starch and Starch Derivatives .............. 82
2.6.1 The Paper and Corrugating Industries ............... 83
2.6.1.1 Use of Starch in the Paper Industry ....... 83
2.6.1.2 Use of Starch in the Corrugating
Industry .................................. 85
2.6.2 The Textile Industry ............................... 85
2.6.2.1 Sizing Agents ............................. 85
2.6.2.2 Textile-printing Thickeners ............... 86
2.6.2.3 Finishing Agents .......................... 86
2.6.3 Adhesives .......................................... 87
2.6.4 Building Chemistry ................................. 87
2.6.5 Pharmaceuticals and Cosmetics ...................... 88
2.6.6 Laundry Starches ................................... 89
2.6.7 Bioconversion of Starch ............................ 89
2.6.8 Other Applications of Starch ....................... 91
2.7 Future Trends and Developments ............................ 92
2.7.1 Tailor-made Starches by Use of Biotechnological
Tools .............................................. 92
2.7.2 New Modification Technologies for New Properties ... 93
2.7.3 New Fields of Application .......................... 94
Bibliography .............................................. 95
3 Lignocellulose-based Chemical Products and Product
Family Trees .............................................. 97
Birgit Kamm, Michael Kamm, Matthias Schmidt, Thomas
Hirth, and Margit Schulze
3.1 Introduction .............................................. 97
3.2 Historical Outline of Chemical and Technical Aspects of
Utilization Lignocellulose in the 19th and 20th Century ... 98
3.2.1 From the Beginnings of Lignocellulose Chemistry
Until 1800 ......................................... 98
3.2.2 Lignocellulose Chemistry in the Eighteenth
Century ............................................ 99
3.2.2.1 Cellulose Saccharification ................ 99
3.2.2.2 Oxalic Acid ............................... 99
3.2.2.3 Xyloidin and Nitrocellulose ............... 99
3.2.2.4 Cellulose ................................ 100
3.2.2.5 Levulinic Acid ........................... 100
3.2.2.6 Lignin ................................... 101
3.2.2.7 Hemicellulose (Polyoses) and Furfural .... 101
3.2.2.8 Lignocellulose ........................... 202
3.2.3 Industrial Lignocellulose Utilization in the
19th and Beginning of the 20th Century ............ 102
3.3 Lignocellulosic Raw Material ............................. 203
3.3.1 Definition ........................................ 203
3.3.2 Sources and Composition ........................... 205
3.3.2.1 Sources .................................. 205
3.3.1 Chemical Composition of Lignocelluloses ........... 106
3.3.2.3 Carbohydrates in Lignocelluloses ......... 108
3.4 Lignocelluloses in Biorefineries ......................... 110
3.4.1 Background ........................................ 110
3.4.1.1 Example 1 ................................ 110
3.4.1.2 Example 2 ................................ 110
3.4.2 LCF Biorefinery ................................... 111
3.4.3 LCF Conversion Methods ............................ 113
3.4.3.1 Pretreatment Methods ..................... 113
3.4.3.2 Chemical Pulping Methods ................. 114
3.4.3.3 Enzymatic Methods ........................ 115
3.5 Lignin-based Product Lines ............................... 116
3.5.1 Isolation and Application Areas ................... 116
3.5.2 A Lignin-based Product Family Tree ................ 117
3.6 Hemicellulose-based Product Lines ........................ 119
3.6.1 Isolation and Application Areas ................... 119
3.6.2 A Hemicellulose-based Product Family Tree ......... 119
3.6.2.1 Mannan/Mannose Product Lines ............. 119
3.6.2.2 Xylan/Xylose Product Line ................ 120
3.6.3 Furfural and Furfural-based Products .............. 122
3.6.3.1 Furfural ................................. 122
3.6.3.2 A Furfural-based Family Tree ............. 127
3.7 Cellulose-based Product Lines ............................ 127
3.7.1 Isolation, Fractionation and Application Areas .... 127
3.7.2 Cellulose-based Key Chemicals ..................... 128
3.7.2.1 Glucose .................................. 128
3.7.2.2 Sorbitol ................................. 129
3.7.2.3 Glucosides ............................... 130
3.7.2.4 Fructose ................................. 131
3.7.2.5 Ethanol .................................. 132
3.7.2.6 Hydroxymethylfurfural .................... 133
3.7.2.7 Levulinic Acid ........................... 134
3.7.3 An HMF and Levulinic Acid-based Family Tree ....... 135
3.8 Outlook and Perspectives ................................. 138
References ............................................... 139
Lignin Line and Lignin-based Product Family Trees
4 Lignin Chemistry and its Role in Biomass Conversion ...... 151
Costa Brunow
4.1 Introduction ............................................. 151
4.2 Historical Overview ...................................... 152
4.3 The Structure of Lignin .................................. 152
4.3.1 Definition ........................................ 152
4.3.2 The Bonding of the Phenylpropane Units ............ 153
4.3.3 Bonding Pattems and Functional Groups ............. 256
4.3.3.1 General .................................. 156
4.3.3.2 Survey of Different Types of Lignin
Unit ..................................... 156
4.4 Role of Lignin in Biomass Conversion ..................... 159
4.4.1 Introduction ...................................... 159
4.4.2 Low-molecular-weight Chemicals from Lignin ........ 260
4.4.3 Polymeric Products ................................ 260
4.4.4 Biodegradation .................................... 260
References ............................................... 260
5 Industrial Lignin Production and Applications ............ 265
E. Kendall Pye
5.1 Introduction ............................................. 165
5.2 Historical Outline of Lignin Production and
Applications ............................................. 168
5.2.1 Lignosulfonates from the Sulfite Pulping
Industry .......................................... 168
5.2.2 Lignin from the Kraft Pulping Industry ............ 169
5.2.3 Lignin from the Soda Pulping Industry ............. 170
5.3 Existing Industrial Lignin Products ...................... 272
5.3.1 Lignosulfonates ................................... 272
5.3.1.1 Chemical Characteristics of
Lignosulfonates .......................... 272
5.3.1.2 Lignosulfonate Producers ................. 273
5.3.1.3 Markets for Lignosulfonates .............. 274
5.3.2 Kraft Pulping and Kraft Lignin Recovery ........... 275
5.3.2.1 Producers of Kraft Lignin ................ 275
5.3.2.2 Markets for Kraft Lignin ................. 275
5.3.3 Lignins Produced from the Soda Process ............ 276
5.3.4 Lignin from Other Biomass Processing Operations ... 276
5.3.5 Comparisons of the Physical and Chemical
Properties of Commercially Available Lignins ...... 276
5.4 Lignin from Biorefineries ................................ 277
5.4.1 Advantages of Ligtoin and Hemicellulose Removal
on Saccharification and Fermentation of
Cellulose ......................................... 277
5.4.2 Lignin from an Organosolv Biorefinery ............. 279
5.5 Applications and Markets for Lignin ...................... 182
5.5.1 Phenol-Formaldehyde Resin Applications ............ 282
5.5.2 The Potential Use of Biorefinery Lignin in
Phenolic Resins ................................... 282
5.5.3 Panelboard Adhesives .............................. 283
5.5.4 Thermoset Resins for Molded Products .............. 284
5.5.5 Friction Materials ................................ 284
5.5.6 Foundry Resins .................................... 284
5.5.7 Insulation Materials .............................. 285
5.5.8 Decorative Laminates .............................. 285
5.5.9 Panel and Door Binders ............................ 285
5.5.10 Rubber Processing ................................. 286
5.5.11 The Opportunity for Lignin in Phenol-
Formaldehyde Resin Markets ........................ 187
5.6 Lignin as an Antioxidant ................................. 187
5.6.1 Antioxidants in Animal Feed Supplements ........... 188
5.6.2 Antioxidants in the Rubber Industry ............... 188
5.6.3 Antioxidants in the Lubricants Industry ........... 288
5.7 Applications for Water-soluble, Derivatized Lignins ...... 189
5.7.1 Concrete Admixtures ............................... 189
5.7.2 Dye Dispersants ................................... 190
5.7.3 Asphalt Emulsifiers ............................... 192
5.7.4 Agricultural Applications ......................... 192
5.7.5 Dispersants for Herbicides, Pesticides and
Fungicides ........................................ 193
5.8 New and Emerging Markets for Lignin ...................... 194
5.8.1 Printed Circuit Board Resins ...................... 194
5.8.2 Animal Health Applications ........................ 195
5.8.3 Animal Feed Supplement ............................ 196
5.8.4 Carbon Fibers for Mass-produced Vehicles .......... 196
5.9 Conclusions and Perspectives ............................. 198
References ............................................... 199
Protein Line and Amino Acid-based Product Family Trees
6 Towards Integration of Biorefinery and Microbial Amino
Acid Production .......................................... 201
Achim Marx, Volker F. Wendisch, Ralf Kelle, and Stefan
Buchholz
6.1 Introduction ............................................. 201
6.2 Present State of the Industry ............................ 202
6.2.1 Microbial Amino Acid Production ................... 202
6.2.2 Biorefinery and the Building-block Concept ........ 202
6.2.3 Metabolic Engineering and the Building-block
Concept ........................................... 204
6.3 Environmental and Commercial Consideration of Microbial
Amino Acid Production Integrated in a Biorefinery ........ 205
6.4 Technical Constraints for Integration of Microbial
Amino Acid Fermentation into a Biorefinery ............... 209
6.4.1 Mono-septic Operation ............................. 209
6.4.2 Carbon Sources .................................... 209
6.4.3 Nitrogen Source ................................... 211
6.4.4 Phosphorus Source ................................. 211
6.4.5 Mixing and Oxygen Supply .......................... 212
6.4.6 Toxicity .......................................... 212
6.4.7 Cultivation Temperature ........................... 213
6.5 Outlook and Perspectives ................................. 213
Acknowledgment............................................ 214
References ............................................... 215
7 Protein-based Polymers: Mechanistic Foundations for
Bioproduction and Engineering ............................ 217
Dan W. Urry
7.1 Introduction ............................................. 217
7.1.1 Definitions ....................................... 217
7.1.1.1 Proteins and Protein-based Polymers ...... 217
7.1.1.2 Two Basic Principles for Protein-based
Polymer Engineering ...................... 217
7.1.2 Proteins in Aqueous Media ......................... 218
7.1.3 Thermodynamics of Proteins in Water ............... 218
7.1.3.1 Exothermic Hydration of Apolar Groups .... 218
7.1.3.2 The Change in Gibbs Free Energy of
Hydrophobic Association .................. 218
7.1.3.3 The Apolar-Polar Repulsive Free Energy
of Hydration, ΔGap ...................... 218
7.1.4 The Inverse Temperature Transition for
Hydrophobic Association ........................... 219
7.1.5 The Role of Elasticity in the Engineering of
Protein-based Polymers ............................ 219
7.1.5.1 Near Ideal Elasticity Provides for
Efficient Energy Conversion .............. 219
7.1.5.2 Mechanism of Near Ideal Elasticity ....... 220
7.1.6 Many of the Advantages of Protein-based
Polymeric Materials ............................... 220
7.2 Historical Outline ....................................... 221
7.2.1 Historical Beginnings of (Elastic) Protein-based
Polymer Development ............................... 221
7.2.2 Mechanistic Foundations: Fundamental Engineering
Principles ........................................ 222
7.2.2.1 The Hydrophobic Consilient Mechanism ..... 222
7.2.2.2 The Elastic Consilient Mechanism ......... 223
7.2.3 Highlights of Bioproduction ....................... 223
7.3 Bioproduction ............................................ 224
7.3.1 Gene Construction using Recombinant DNA
Technology......................................... 225
7.3.1.1 Preparation of Monomer Genes and the
PCR Technique ............................ 225
7.3.1.2 Transformation, Monomer Gene Production
and Sequence Verification ................ 226
7.3.1.3 Monomer Gene Concatenation Produces
Multimer Genes of Monomer ................ 226
7.3.2 E. coli Transformation for Protein-based Polymer
Expression ........................................ 227
7.3.3 Fermentation using Transformed E. coli ............ 227
7.4 Purification of Protein-based Polymers ................... 227
7.4.1 Use of the Inverse Temperature Transition as
a Method of Purification .......................... 228
7.4.1.1 Purification by Phase Separation as
Demonstrated by SDS-PAGE ................. 228
7.4.1.2 Purification by Phase Separation Shown
by Carbon-14-labeled E. coli ............. 228
7.4.2 Physical Characterization and Verification of
Product Integrity ................................. 229
7.4.2.1 Gross Visualization of the Phase
Separated Product ........................ 229
7.4.2.2 Sequence Integrity and Purity Evaluated
by Nuclear Magnetic Resonance ............ 229
7.4.2.3 Mass Spectra Reaffirm Size of Expressed
Polymer .................................. 229
7.4.3 Biocompatibility .................................. 230
7.4.3.1 The Challenge of Using E. coii-produced
Protein as a Biomaterial ................. 230
7.4.3.2 Removal of Endotoxins and Determination
of Levels ................................ 230
7.4.3.3 Western Immunoblot Technique to
Demonstrate Level of Purity .............. 230
7.4.3 A Western Immunodotblot Technique to Demonstrate
Medical Grade Purity .............................. 231
7.4.3.5 Subcutaneous Injection in the
Guinea-pig ............................... 231
7.4.3.6 ASTM Tests ............................... 232
7.5 Mechanistic Foundations for Engineering Protein-based
Polymers ................................................. 232
7.5.1 Phenomenological Axioms ........................... 232
7.5.2 The Change in Gibbs Free Energy for Hydrophobic
Association, ΔGHA ................................. 232
7.5.2.1 The Change in Gibbs Free Energy
Attending a Phase Transition, δΔGt(χ) .... 234
7.5.2.2 The ΔGHA-based Hydrophobicity Scale for
Amino Acid Residues ...................... 234
7.5.2.3 ΔG°HA-based Hydrophobicity Scale of
Prosthetic Groups, etc. .................. 235
7.5.2.4 Comprehensive Hydrophobic Effect: δGHA
Responds to all Variables ................ 237
7.5.2.5 The Apolar-Polar Repulsive Free Energy
of Hydration, ΔGap ....................... 237
7.5.3 The Coupling of Hydrophobic and Elastic
Mechanisms ........................................ 237
7.6 Examples of Applications ................................. 238
7.6.1 Soft Tissue Restoration ........................... 238
7.6.1.1 Prevention of Post-surgical Adhesions .... 238
7.6.1.2 Soft Tissue Augmentation ................. 238
7.6.1.3 Soft Tissue Reconstruction: The Concept
of Temporary Functional Scaffoldings ..... 239
7.6.2 Controlled Release Devices for Amphiphilic Drugs
and Therapeutics .................................. 240
7.6.2.1 The Use of AGap in the Design of
Controlled-release Devices ............... 240
7.6.2.2 Prevention of Pressure Ulcers by Means
of Elastic Patches for Drag Delivery ..... 240
7.6.3 Fibers of Improved Elastic Moduli and Break
Stresses and Strains .............................. 241
7.6.4 Programmably Biodegradable Thermoplastics ......... 241
7.6.5 Acoustic Absorption ............................... 242
7.7 Outlook and Perspectives ................................. 242
7.7.1 List of Gene Constructions and Expressed
Protein-based Polymers ............................ 242
7.7.2 Efforts Toward Low-cost Production in other
Microbes and in Plants ............................ 242
7.8 Patents .................................................. 245
7.8.1 Patents of D.W. Urry on Protein-based Polymers .... 245
7.8.2 Result of Ex Parte Patent Reexamination Request
to the USPTO ...................................... 245
Acknowledgment ........................................... 249
References ............................................... 249
Biobased Fats (Lipids) and Oils
8 New Syntheses with Oils and Fats as Renewable
Raw Materials for the Chemical Industry .................. 253
Ursula Biermann, Wolfgang Friedt, Siegmund Lang,
Wilfried Lühs, Guido Machmüller, Jürgen О. Metzger,
Mark Rüsch gen. Klaas, Hans J. Schäfer, Manfred
P. Schneider
8.1 Introduction ............................................. 253
8.2 Reactions of Unsaturated Fatty Compounds ................. 254
8.2.1 Oxidations ........................................ 254
8.2.1.1 New Methods for the Epoxidation of
Unsaturated Fatty Acids .................. 254
8.2.1.2 Oxidation to vic-Dihydroxy Fatty Acids ... 257
8.2.1.3 Oxidative Cleavage ....................... 258
8.2.2 Transition Metal-Catalyzed Syntheses of Aromatic
Compounds ......................................... 259
8.2.3 Olefin Metathesis ................................. 259
8.2.4 Pericyclic Reactions .............................. 260
8.2.5 Radical Additions ................................. 261
8.2.5.1 Solvent-Free, Copper-Initiated
Additions of 2-Halocarboxylates .......... 262
8.2.5.2 Addition of Perfluoroalkyl Iodides ....... 263
8.2.5.3 Thermal Addition of Alkanes .............. 264
8.2.6 Lewis Acid-Induced Cationic Addition .............. 264
8.2.7 Nucleophilic Addition to Reversed-Polarity
Unsaturated Fatty Acids ........................... 265
8.3 Reactions of Saturated Fatty Compounds ................... 266
8.3.1 Radical C-C Coupling .............................. 266
8.3.1.1 Oxidative Coupling of C2 Anions of
Fatty Acids .............................. 266
8.3.1.2 Anodic Homo- and Heterocoupling of
Fatty Acids (Kolbe Electrolysis) ......... 267
8.3.2 Functionalization of C-H Bonds .................... 269
8.3.2.1 Oxidation of Nonactivated C-H Bonds ...... 269
8.3.2.2 Oxidation of Allylic C-H Bonds ........... 269
8.4 Enzymatic Reactions ...................................... 270
8.4.1 Lipase Catalyzed Transformations .................. 270
8.4.1.1 Lipase-Catalyzed Syntheses of
Monoglycerides and Diglycerides .......... 270
8.4.1.2 Lipase-Catalyzed Syntheses of
Carbohydrate Esters ...................... 272
8.4.2 Microbial Transformations ......................... 272
8.4.2.1 Microbial Hydration of Unsaturated
Fatty Acids .............................. 272
8.4.2.2 Microbial ω- and β-Oxidation of Fatty
Acids .................................... 273
8.4.3 Microbial Conversion of Oils/Fats and Glucose
into Glycolipids .................................. 274
8.5 Improvement in Natural Oils and Fats by Plant Breeding ... 275
8.5.1 Gene Technology as an Extension of the
Methodological Repertoire of Plant Breeding ....... 275
8.5.2 New Oil Qualities by Oil Designed with Available
Agricultural Varieties ............................ 276
8.5.3 Overview of Renewable Raw Materials Optimized by
Breeding .......................................... 277
8.5.3.1 Soybean .................................. 277
8.5.3.2 Rapeseed ................................. 277
8.5.3.3 Sunflower ................................ 280
8.5.3.4 Peanut ................................... 281
8.5.3.5 Linseed .................................. 281
8.5.4 Concluding Remarks on the Use of Gene Technology .. 281
8.6 Future Prospects ......................................... 282
Acknowledgments .......................................... 282
References ............................................... 282
9 Industrial Development and Application of Biobased
Oleochemicals ............................................ 291
Karlheinz Hill
9.1 Introduction ............................................. 291
9.2 The Raw Materials ........................................ 292
9.3 Ecological Compatibility ................................. 293
9.4 Examples of Products ..................................... 294
9.4.1 Oleochemicals for Polymer Applications ............ 295
9.4.1.1 Dimerdiols Based on Dimer Acid ........... 297
9.4.1.2 Polyols Based on Epoxides ................ 298
9.4.2 Biodegradable Fatty Acid Esters for Lubricants .... 299
9.4.3 Surfactants and Emulsifiers Derived from
Vegetable Oil ..................................... 301
9.4.3.1 Fatty Alcohol Sulfate (FAS) .............. 303
9.4.3.2 Acylated Proteins and Amino Acids
(Protein-Fatty Acid Condensates) ......... 304
9.4.3.3 Carbohydrate-based Surfactants - Alkyl
Polyglycosides ........................... 305
9.4.3.4 Alkyl Polyglycoside Carboxylate .......... 307
9.4.3.5 Polyol Esters ............................ 307
9.4.3.6 Multifunctional Care Additives for Skin
and Hair ................................. 309
9.4.4 Emollients ........................................ 310
9.4.4.1 Introduction ............................. 310
9.4.4.2 Dialkyl Carbonate ........................ 311
9.4.4.3 Guerbet Alcohols ......................... 311
9.5 Perspectives ............................................. 312
9.6 Trademarks ............................................... 312
References ............................................... 312
Special Ingredients and Subsequent Products
10 Phytochemicals, Dyes, and Pigments in the Biorefinery
Context .................................................. 315
George A. Kraus
10.1 Introduction ............................................. 315
10.2 Historical Outline ....................................... 316
10.3 Phytochemicals from Corn and Soybeans .................... 317
10.3.1 Phytosterols ...................................... 317
10.3.2 Lecithin .......................................... 318
10.3.3 Tocopherols ....................................... 319
10.3.4 Carotenoids ....................................... 320
10.3.5 Phytoestrogens .................................... 321
10.3.6 Saponins .......................................... 321
10.3.7 Protease Inhibitors ............................... 322
10.4 Outlook and Perspectives ................................. 323
References ............................................... 323
11 Adding Color to Green Chemistry? An Overview of the
Fundamentals and Potential of Chlorophylls ............... 325
Mathias О. Senge and Julia Richter
11.1 Introduction ............................................. 325
11.2 Historical Outline ....................................... 325
11.3 Chlorophyll Fundamentals ................................. 326
11.3.1 Occurrence and Basic Structures ................... 326
11.3.2 Principles of Chlorophyll Chemistry ............... 327
11.3.3 Isolation of Chlorophylls ......................... 328
11.4 Chlorophyll Breakdown and Chemical Transformations ....... 330
11.4.1 Biological Chlorophyll Catabolism ................. 330
11.4.2 Geological Chlorophyll Degradation -
Petroporphyrins ................................... 331
11.4.3 Chemical Degradation of Chlorophylls .............. 333
11.5 Industrial Uses of Chlorophyll Derivatives ............... 335
11.6 A Look at "Green" Chlorophyll Chemistry .................. 337
11.7 Outlook and Perspectives ................................. 339
Acknowledgment ........................................... 341
References and Notes ..................................... 341
Part II Biobased Industrial Products, Materials and Consumer
Products
12 Industrial Chemicals from Biomass - Industrial Concepts .. 347
Johan Thoen and Rainer Busch
12.1 Introduction ............................................. 347
12.2 Historical Outline ....................................... 347
12.3 Basic Principles ......................................... 349
12.3.1 Primary Conversion Technologies of Biomass ........ 350
12.3.1.1 Gasification ............................. 350
12.3.1.2 Hydrothermolysis ......................... 351
12.3.1.3 Fermentation to Ethanol .................. 351
12.4 Current Status ........................................... 352
12.4.1 Europe ............................................ 351
12.4.2 United States ..................................... 353
12.4.3 Products .......................................... 353
12.5 Industrial Concepts ...................................... 354
12.5.1 Introduction ...................................... 354
12.5.2 Biorefinery Concepts .............................. 355
12.5.3 Classes of Bioproduct ............................. 356
12.5.4 Opportunities for Industrial Bioproducts .......... 357
12.5.5 Product Categories Based on C6-Carbon Sugars to
Bioproducts ....................................... 358
12.5.6 Product Categories Based on C5-Carbon Sugars to
Bioproducts ....................................... 358
12.5.7 Thermochemical Conversion of Sugars to
Bioproducts ....................................... 360
12.5.8 Thermochemical Conversion of Oils and Lipid
Based Bioproducts ................................. 361
12.5.9 Bioproducts via Gasification ...................... 361
12.5.10 Bioproducts via Pyrolysis ........................ 362
12.5.11 Biocomposites .................................... 362
12.6 Outlook and Perspectives ................................. 362
References ............................................... 364
13 Succinic Acid - A Model Building Block for Chemical
Production from Renewable Resources ...................... 367
Todd Werpy, John Frye, and John Holladay
13.1 Introduction ........................................ 367
13.2 Economics of Feedstock Supply ....................... 368
13.3 Succinic Acid Fermentation .......................... 369
13.4 Succinic Acid Catalytic Transformations ............. 372
13.5 Current Petrochemical Technology .................... 373
13.5.1 1,4-BDO, THF, GBL, and NMP ................... 373
13.6 Current Biobased Technology .............................. 375
13.6.1 1,4-BDO, GBL, and NMP ............................. 375
13.6.2 Derivatives of Diammonium Succinate ............... 376
13.7 Conclusions .............................................. 378
References ............................................... 378
14 Polylactic Acid from Renewable Resources ................. 381
Patrick Gruber, David E. Henton, and Jack Starr
14.1 Introduction ............................................. 381
14.2 Lactic Acid .............................................. 382
14.2.1 Lactic Acid Production Routes ..................... 382
14.2.1.1 Chemical Synthesis ....................... 382
14.2.1.2 Fermentation ............................. 383
14.2.2 Production by Fermentation ........................ 384
14.2.2.1 Microorganisms ........................... 384
14.2.2.2 Sugar Feedstock .......................... 385
14.2.2.3 Nutrients ................................ 385
14.2.2.4 Neutralizing Agent ....................... 385
14.2.3 Acidification ..................................... 386
14.2.3.1 Strong Acid Addition ..................... 386
14.2.3.2 Salt Splitting Technology ................ 387
14.2.4 Purification ...................................... 388
14.2.4.1 Cell Removal ............................. 388
14.2.4.2 Separation of Residual Sugars,
Nutrients and Fermentation By-products ... 388
14.3 PLA Production ........................................... 390
14.3.1 Polymerization of Lactide ......................... 392
14.4 Control of Crystalline Melting Point ..................... 394
14.5 Rheology Control by Molecular Weight and Branching ....... 396
14.5.1 Melt Rheology of Linear PLA ....................... 397
14.5.2 Melt Rheology of Branched PLA ..................... 397
14.5.3 Branching Technology .............................. 398
14.5.3.1 Multi-functional Polymerization
Initiators ............................... 398
14.5.3.2 Hydroxy Cyclic Ester and/or Carbonate
Polymerization Initiators ................ 398
14.5.3.3 Multi-cyclic Ester, Multi-cyclic
Carbonate and/or Multi-cyclic Epoxy
Comonomers ............................... 398
14.5.3.4 Free Radical Cross-linking ............... 399
14.6 Melt Stability ........................................... 399
14.7 Applications and Performance ............................. 400
14.8 PLA Stereocomplex ........................................ 401
14.9 Fossil Resource Use and Green House Gases ................ 402
14.10 Summary ................................................. 402
Abbreviations ............................................ 403
References ............................................... 404
15 Biobased Consumer Products for Cosmetics ................. 409
Thomas C. Kripp
15.1 Introduction and Historical Outline ...................... 409
15.1.1 Cosmetics Past and Present ........................ 409
15.1.2 Bionics: Learning from Nature ..................... 410
15.2 Betaine, The Conditioner Made from Sugar Beet ............ 410
15.2.1 Occurrence ........................................ 410
15.2.2 Chemical Properties ............................... 411
15.2.3 Production ........................................ 411
15.2.4 Use and Fields of Application ..................... 412
15.2.5 Innovation Through Combination: Betaine Esters .... 414
15.2.6 Summary and Prospects ............................. 415
15.3 Chitosan, Hair-setting Agent from the Ocean .............. 415
15.3.1 Chitin, a Precursor of Chitosan ................... 415
15.3.2 Occurrence of Chitin .............................. 415
15.3.3 Production ........................................ 416
15.3.3.1 Purification of Chitin ................... 416
15.3.3.2 Production of Chitosan ................... 417
15.3.4 Chitosan in cosmetic products ..................... 419
15.3.5 Summary and Prospect .............................. 421
15.4 From Energy Reserve to Shampoo Bottle: Biopol ............ 422
15.4.1 Biodegradable Packages ............................ 422
15.4.2 What is "Biopol"? ................................. 423
15.4.3 Biodegradability of Biopol ........................ 424
15.4.4 The Long Way to the Shampoo Bottle ................ 426
15.4.4.1 Product Development ...................... 426
15.4.4.2 Market Launch ............................ 427
15.4.5 Quo vadis, Biopol? ................................ 428
15.5 Natural Apple-peel Wax: Protection for Hair and Skin ..... 429
15.5.1 Raw Material Source ............................... 429
15.5.2 Apple-peel Wax .................................... 430
15.5.3 Observations ...................................... 430
15.5.4 Production of Apple-peel Wax ...................... 432
15.5.5 Chemical Composition .............................. 433
15.5.6 Mode of Action and Uses ........................... 433
15.5.6.1 Skin Cosmetics ........................... 434
15.5.6.2 Hair Care ................................ 434
15.5.7 Market Launch ..................................... 436
15.5.8 Summary and Prospects ............................. 436
15.6 Ilex Resin: From Shiny Leaves to Shiny Hair .............. 437
15.6.1 Holly ............................................. 437
15.6.2 Extraction of a Resin Fraction .................... 438
15.6.3 Effects in Cosmetics .............................. 439
15.6.3.1 Skin Care ................................ 439
15.6.3.2 Hair Care ................................ 439
15.6.3.3 Styling .................................. 440
15.6.4 Summary and Prospects ............................. 440
References ............................................... 441
Part III Biobased Industry: Economy, Commercialization and
Sustainability
16 Industrial Biotech - Setting Conditions to Capitalize
on the Economic Potential ................................ 445
Rolf Bachmann and Jens Riese
16.1 Introduction ............................................. 445
16.2 Time to Exploit the Potential ............................ 446
16.2.1 How Far Can it Go? ................................ 446
16.2.2 Better Technology, Faster Results ................. 447
16.2.3 Environmentally and Balance-sheet Friendly ........ 448
16.2.4 Rekindling Chemicals Innovation ................... 450
16.2.5 Increasing Corporate Action in all Segments ....... 452
16.3 The Importance of Residual Biomass ....................... 452
16.3.1 Why Waste Biomass Works ........................... 452
16.3.2 Economic Benefits and Regulation .................. 452
16.3.3 Still a Long Way to Go ............................ 454
16.3.4 Collaboration Will Push Biomass Conversion
Forward ........................................... 454
16.4 Overcoming the Challenges Ahead .......................... 455
16.4.1 Internal Obstacles ................................ 455
16.4.2 External Challenges ............................... 456
16.5 Overcoming Challenges .................................... 457
16.5.1 Case 1: Building a Biotech Strategy ............... 457
16.5.2 Case 2: Identifying the Right Opportunities ....... 458
16.5.3 Case 3: Managing Uncertainties .................... 459
16.5.4 Case 4: Preparing the Launch and Market
Development ....................................... 460
16.5.5 Case 5: Building a Favorable External
Environment ....................................... 461
16.6 More Needs to be Done .................................... 461
Subject Index ................................................. 463
|