Micro process engineering: a comprehensive handbook; vol.3: System, process and plant engineering (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMicro process engineering: a comprehensive handbook. Vol.3: System, process and plant engineering / ed. by V.Hessel et al. - Weinheim: Wiley-VCH, 2009. - xxi, 335 p.: ill. - Incl. bibl. ref. - Ind.: p.325-335. - ISBN 978-3-527-31550-5
 

Место хранения: 042 | Институт химии нефти СО РАН | Томск

Оглавление / Contents
 
Preface ........................................................ XV
About the Editors ............................................ XVII
List of Contributors .......................................... XIX

Part I  Microreactor Systems Design and Scale-up ................ 1

1  Structured Multi-scale Process Systems Design and
   Engineering - The Role of Microreactor Technology in
   Chemical Process Design ...................................... 3
   Michael Matlosz, Laurent Falk, and Jean-Marc Commenge
1.1  Introduction ............................................... 3
1.2  Multi-scale Structuring for Sustainable Intensification/
     Miniaturization ............................................ 6
     1.2.1  Multi-scale Design that Reconciles Intensification
            with Sustainability ................................. 7
     1.2.2  Detailed Comparison ................................ 10
            1.2.2.1  Fed-batch Reactor ......................... 10
            1.2.2.2  Tubular Reactor ........................... 12
            1.2.2.3  Comparison of Continuous and Fed-batch
                     Reactors .................................. 13
            1.2.2.4  A Possible Solution: Multi-scale Design ... 13
1.3  Multi-scale Design: Requirements and Developments ......... 15
     1.3.1  Scale-up by Modeling ............................... 16
     1.3.2  Numbering-up by Replication ........................ 17
     1.3.3  Structured Multi-scale Design: a New Hybrid
            Approach ........................................... 18
1.4  Conclusion ................................................ 19
References ..................................................... 20

2  Reaction and Process System Analysis, Miniaturization and
   Intensification Strategies .................................. 23
   Jean-Marc Commenge and Laurent Falk
2.1  Introduction .............................................. 23
2.2  Reactor Analysis for Further Intensification .............. 24
     2.2.1  Analysis of the Limiting Phenomenon ................ 24
     2.2.2  The Reference Time ................................. 25
     2.2.3  The Fundamental Characteristic Times ............... 26
     2.2.4  Relation Between System Efficiency and
            Characteristic Times
     2.2.5  Times Grading and Scale Dependence of the
            Phenomena Hierarchy ................................ 29
     2.2.6  The Global Operation Time as a Result of the
            Couplings .......................................... 31
     2.2.7  Comparison of the Global Time with the
            Fundamental Times
     2.2.8  Effects Related to the Control of the Phenomena
            Hierarchy .......................................... 33
2.3  Examples .................................................. 33
     2.3.1  Scales of Homogeneous Chemistry .................... 33
     2.3.2  Competitive Reactions and Mass-transfer Effect ..... 35
2.4  Miniaturization and Intensification Strategies ............ 37
     2.4.1  Miniaturization without Hierarchy Change ........... 38
     2.4.2  Miniaturization with Hierarchy Change .............. 40
     2.4.3  Other Intensification Strategies ................... 41
References ..................................................... 42

3  Principles and Guidelines for Selection of Microstructured
   Devices for Mixing and Reaction ............................. 43
   Günter Tekautz, Barbara Zechner, Lukas E. Wiesegger, and
   Dirk Kirschneck
3.1  Introduction .............................................. 43
3.2  Liquid-Liquid Reactions ................................... 44
     3.2.1  Introductory Remarks ............................... 44
     3.2.2  Classification of Microreactors -
            Phase-contacting Principles ........................ 44
     3.2.3  Criteria for Reactor Selection ..................... 45
            3.2.3.1  Process Parameters (Temperature,
                     Pressure, Throughput) ..................... 45
            3.2.3.2  Mixing Performance ........................ 46
            3.2.3.3  Residence Time Distribution ............... 47
            3.2.3.4  Ability for Scale-up or Scale-out ......... 48
            3.2.3.5  Usability ................................. 49
            3.2.3.6  Reactor Material .......................... 49
     3.2.4  Liquid-Solid Reactions ............................. 50
3.3  Gas-Liquid Reactions ...................................... 51
     3.3.1  Introductory Remarks ............................... 51
     3.3.2  Classification of Microreactors -
            Phase-contacting Principles ........................ 51
            3.3.2.1  Continuous-Continuous Phase (Type A) ...... 51
            3.3.2.2  Disperse-Continuous Phase (Type B) ........ 52
     3.3.3  Criteria for Reactor Selection ..................... 53
            3.3.3.1  Process Parameters (Temperature,
                     Pressure, Throughput) ..................... 53
            3.3.3.2  Reaction and Fluid Properties ............. 54
            3.3.3.3  Reactor Material .......................... 54
            3.3.3.4  Affordability, Reliability and
                     Sustainability ............................ 55
            3.3.3.5  Ability for Scale-up or Scale-out ......... 56
     3.3.4  Microreactors for Gas-Liquid Contacting ............ 56
3.4  Catalytic Gas-phase Reactions ............................. 58
     3.4.1  Introductory Remarks ............................... 58
     3.4.2  Classification of Microreactors - Phase-
            contacting Principles .............................. 60
            3.4.2.1  Packed-bed Microreactors .................. 60
            3.4.2.2  Catalytic Wall Microreactors .............. 61
            3.4.2.3  Catalytic Bed Microreactors ............... 61
     3.4.3  Criteria for Reactpr Selection ..................... 61
            3.4.3.1  Reactor Material .......................... 64
            3.4.3.2  Control of Critical Parameters ............ 64
            3.4.3.3  Pressure Drop ............................. 65
            3.4.3.4  Reactor Handling .......................... 65
            3.4.3.5  Residence Time ............................ 65
            3.4.3.6  Catalyst Deposition and Characterization .. 65
     3.4.4  Purchasable Microreactors .......................... 66
References ..................................................... 67

4  Catalyst Development, Screening and Optimization ............ 75
   André C. van Veen, Yirk Schuurman, and Claude Mirodatos
4.1  Introduction .............................................. 75
     4.1.1  Impact of Fuel Nature .............................. 75
     4.1.2  General Features of Coatings ....................... 77
     4.1.3  On-board Systems Integration and Requirements ...... 77
     4.1.4  Laboratory-scale Requirements ...................... 78
4.2  Catalyst Developments: Requirements and Implemented
     Techniques for Microstructure Coating ..................... 79
     4.2.1  Specificity of Characterization Tools for Coated
            Catalysts .......................................... 79
     4.2.2  Coating Stability and Adhesion: State of the Art ... 80
            4.2.2.1  State of the Art in Durable Coating
                     Techniques from a Catalyst Designer's
                     Viewpoint ................................. 80
     4.2.3  Characterization of Coating Adhesion ............... 81
     4.2.4  Deposition Techniques .............................. 82
            4.2.4.1  Washcoating ............................... 82
            4.2.4.2  Sol-Gel and CVD Methods ................... 85
     4.2.5  Other Requirements for Coating Optimization ........ 87
4.3  Catalyst Screening in MSRs and Optimization from
     Reaction Modeling ......................................... 88
     4.3.1  Catalyst Performance Testing in MSRs ............... 88
            4.3.1.1  Examples of Reforming in MSRs ............. 88
            4.3.1.2  Examples of CO Clean-up in MSRs ........... 89
     4.3.2  Microstructured Reactors as Kinetic Devices ........ 90
            4.3.2.1  Criteria for Proper Reactor Operation ..... 90
            4.3.2.2  Existing Links Between Kinetics and
                     Catalyst Preparation in MSRs? ............. 93
     4.4  Conclusions and Perspectives ......................... 94
References ..................................................... 96

Part II  Sensing, Analysis, and Control ........................ 99

5  Microtechnology and Process Analytics ...................... 101
   Melvin V. Koch and Ray W. Chrisman
5.1  Introduction ............................................. 101
5.2  Information Sharing in the Process Analytics Field ....... 104
5.3  Characterization Needs for Microsystems .................. 106
5.4  Sampling Specifics for Microscale Systems ................ 108
5.5  Advantages of Using Microscale Systems for Process
     Development .............................................. 110
5.6  Overview of Chemometrics in Process Analytics ............ 110
5.7  New Sampling and Sensor Initiative ....................... 112
5.8  Various New Analytical Approaches that are Suited to
     Microscale Systems ....................................... 113
5.9  Conclusion ............................................... 118
References .................................................... 119

6  Optical In-line Spectroscopy in Microchemical Processes .... 121
   Wolfgang Ferstl
6.1  Introduction ............................................. 121
6.2  Optical Spectroscopy in Microchemical Processes .......... 122
     6.2.1  Spectroscopic Methods ............................. 122
     6.2.2  Integration of Spectroscopic Techniques into
            a Microchemical Process ........................... 124
6.3  Data Generation Using Optical In-line Spectroscopy ....... 125
     6.3.1  Non-concentration-based Information ............... 125
     6.3.2  In-line Quantification in Microchemical
            Processes ......................................... 126
            6.3.2.1  Classical (Univariate) Quantification .... 128
            6.3.2.2  Multivariate Quantification of Complex
                     Reaction Mixtures ........................ 130
6.4  Conclusions .............................................. 133
References .................................................... 133

7  On-line Monitoring of Reaction Kinetics in Microreactors
   Using Mass Spectrometry and Micro-NMR Spectroscopy ......... 135
   Jacob Bart and Han Gardenien
7.1  Introduction ............................................. 135
7.2  On-line Monitoring by Micro-NMR Spectroscopy ............. 136
     7.2.1  Introduction ...................................... 136
     7.2.2  NMR Sensitivity ................................... 137
     7.2.3  Spectral Resolution ............................... 137
            7.2.3.1  Probe-induced Line Broadening ............ 137
            7.2.3.2  Sample-induced Line Broadening ........... 138
     7.2.4  Approaches to High-resolution Micro-NMR ........... 138
            7.2.4.1  Solenoids ................................ 138
            7.2.4.2  Planar Microcoils ........................ 139
     7.2.5  On-line NMR Monitoring ............................ 140
            7.2.5.1  Flow Effects ............................. 142
            7.2.5.2  NMR Detection of Capillary Separations:
                     LC-NMR ................................... 142
            7.2.5.3  NMR Detection of Capillary Separations:
                     CE-NMR ................................... 143
            7.2.5.4  Reaction Kinetics ........................ 143
            7.2.5.5  Protein Folding Kinetics ................. 146
7.3  Monitoring of Reaction Kinetics Using MS ................. 147
     7.3.1  Introduction ...................................... 147
     7.3.2  Gas-phase Reactions in Microreactors Studied by
            MS ................................................ 149
     7.3.3  Liquid-phase Reactions Using an Electrospray
            Interface to MS ................................... 151
     7.3.4  Liquid-phase Reactions Studied by MALDI-MS ........ 153
     7.4  Conclusions and Outlook ............................. 155
References .................................................... 156

8  Automation and Control of Microprocess Systems ............. 159
   Thomas Bayer and Olaf Stange
8.1  Introduction ............................................. 159
8.2  Automation in Laboratories ............................... 160
     8.2.1  Example: HiTec Zang LAB-manager and LAB-box ....... 160
     8.2.2  Example: Siemens SIMATIC PCS7 LAB ................. 163
8.3  Automation in Production ................................. 165
8.4  Special Requirements for Automation in Microprocess
     Technology ............................................... 167
8.5  Process Instrumentation for Microprocess Technology ...... 168
     8.5.1  Temperature Measurement ........................... 168
     8.5.2  Pressure Measurement .............................. 168
     8.5.3  Flow Measurement .................................. 169
8.6  On-line Analysis for Microprocess Technology ............. 170
     8.6.1  pH Measurement .................................... 171
     8.6.2  Spectroscopic Methods ............................. 171
     8.6.3  Gas Chromatography (GC) ........................... 171
8.7  Automation of Microprocess Systems for Process
     Development and Production ............................... 173
     8.7.1  MikroSyn from Mikroglas ........................... 174
     8.7.2  Modular Microreaction System from Ehrfeld
            Mikrotechnik BTS .................................. 175
     8.7.3  SIPROCESS from Siemens ............................ 177
8.8  Conclusion ............................................... 178
Further Reading ............................................... 179

Part III  Microreactor Plants: Case Studies ................... 181

9  Industrial Microreactor Process Development up to
   Production ................................................. 183
   Volker Hessel, Patrick Löb, and Holger Löwe
9.1  Mission Statement from Industry on Impact and Hurdles .... 183
9.2  Screening Studies in Laboratory .......................... 185
     9.2.1  Peptide Synthesis ................................. 185
     9.2.2  Hantzsch Synthesis ................................ 187
     9.2.3  Knorr Synthesis ................................... 188
     9.2.4  Enamine Synthesis ................................. 189
     9.2.5  Aldol Reaction .................................... 190
     9.2.6  Wittig Reaction ................................... 190
     9.2.7  Polyethylene Formation ............................ 191
     9.2.8  Diastereoselective Alkylation ..................... 192
     9.2.9  Multistep Synthesis of a Radiolabeled Imaging
            Probe ............................................. 193
9.3  Process Development at Laboratory Scale .................. 195
     9.3.1  Nitration of Substituted Benzene Derivatives ...... 195
     9.3.2  Phenyl Boronic Acid Synthesis ..................... 196
     9.3.3  Azo Pigment Yellow 12 Manufacture ................. 198
     9.3.4  Desymmetrization of Thioureas ..................... 198
     9.3.5  Vitamin Precursor Synthesis ....................... 200
     9.3.6  Ester Hydrolysis to Produce an Alcohol ............ 200
     9.3.7  Synthesis of Methylenecyclopentane ................ 201
     9.3.8  Condensation of 2-Trimethylsilylethanol ........... 201
     9.3.9  (S)-2-Acetyl Tetrahydrofuran Synthesis ............ 201
     9.3.10 Synthesis of Intermediate for Quinolone
            Antibiotic Drug ................................... 202
     9.3.11 Domino Cycloadditions in Parallel Fashion ......... 203
     9.3.12 Ciprofloxazin Multistep Synthesis ................. 205
     9.3.13 Methyl Carbamate Synthesis ........................ 205
     9.3.14 Newman-Kuart Rearrangement ........................ 206
     9.3.15 Ring-expansion Reaction of N-Boc-4-piperidone ..... 207
     9.3.16 Grignard and Organolithium Reagents ............... 208
9.4  Pilots Plants and Production ............................. 210
     9.4.1  Hydrogen Peroxide Synthesis ....................... 210
     9.4.2  Diverse Case Studies at Lonza ..................... 212
     9.4.3  Polyacrylate Formation ............................ 214
     9.4.4  Butyl Lithium-based Alkylation Reactions .......... 215
     9.4.5  German Project Cluster 2005 ....................... 217
     9.4.6  Development for OLED Materials Production ......... 218
     9.4.7  Development for Liquid/Liquid and Gas/Liquid
            Fine Chemicals Production ......................... 218
     9.4.8  Development of Pharmaceutical Intermediates
            Production by Ozonolysis and Halogenation ......... 219
     9.4.9  Industrial Photochemistry ......................... 222
     9.4.10 Development of Ionic Liquid Production ............ 223
     9.4.11 Japanese Project Cluster 2002 ..................... 223
     9.4.12 Pilot Plant for MMA Manufacture ................... 224
     9.4.13 Grignard Exchange Reaction ........................ 225
     9.4.14 Halogen-Lithium Exchange Pilot Plant .............. 226
     9.4.15 Swern-Moffat Oxidation Pilot Plant ................ 228
     9.4.16 Yellow Nano Pigment Plant ......................... 229
     9.4.17 Polycondensation .................................. 229
     9.4.18 Friedel-Crafts Alkylation ......................... 231
     9.4.19 H202 Based Oxidation to 2-Methyl-l,4-
            naphthoquinone .................................... 232
     9.4.20 Direct Fluorination of Ethyl 3-Oxobutanoate ....... 233
     9.4.21 Propene Oxide Formation ........................... 234
     9.4.22 Diverse Industrial Pilot-oriented Involvements .... 236
     9.4.23 Production of Polymer Intermediates ............... 237
     9.4.24 Synthesis of Diazo Pigments ....................... 238
     9.4.25 Nitroglycerine Production ......................... 240
     9.4.26 Fine Chemical Production Process .................. 241
     9.4.27 Grignard-based Enolate Formation .................. 242
9.5  Challenges and Concerns .................................. 243
References .................................................... 244

10 Microreactor Plant for the Large-scale Production of a
   Fine Chemical Intermediate: a Technical Case Study ......... 249
   P. Poechlauer, M. Vorbach, M. Kotthaus, S. Braune,
   R. Reintjens, F. Mascarello, and G. Kwant
10.1 Introduction ............................................. 249
10.2 Problem Description ...................................... 250
10.3 Solution Methodology ..................................... 251
10.4 Experimental ............................................. 251
10.5 Results of Laboratory-scale Development .................. 252
10.6 Design ................................................... 252
10.7 Operation ................................................ 254
10.8 Conclusion and Outlook ................................... 254

11 Development and Scale-up of a Microreactor Pilot Plant
   Using the Concept of Numbering-up .......................... 255
   Shigenori Togashi
11.1 Introduction ............................................. 255
11.2 Microreactor Unit ........................................ 256
     11.2.1 Configuration ..................................... 256
     11.2.2 Chemical Performance Evaluation ................... 256
11.3 Pilot Plant .............................................. 258
     11.3.1 Numbering-up ...................................... 258
     11.3.2 Flow Performance Evaluation ....................... 260
     11.3.3 Chemical Performance Evaluation ................... 260
11.4 Conclusion ............................................... 261
References .................................................... 261

12 Microstructures as a Tool for Production in the Tons per
   Hour Scale ................................................. 263
   Dirk Kirschneck and Günter Tekautz
12.1 Introduction ............................................. 263
     12.1.1 Driving Forces for Using Microstructures .......... 263
     12.1.2 Important Impacts on the Development Process ...... 264
     12.1.3 Small-scale Production Solutions .................. 265
     12.1.4 Multi-purpose or Dedicated for Small Volumes ...... 266
     12.1.5 Microstructures as a Production-scale Solution .... 267
12.2 Production-scale Case Study .............................. 268
     12.2.1 The Batch Process ................................. 268
     12.2.2 Basic Feasibility ................................. 268
     12.2.3 StarLam Concept ................................... 269
     12.2.4 Laboratory-scale Plant ............................ 270
     12.2.5 Optimization and Integration ...................... 270
     12.2.6 Summary ........................................... 272
12.3 Conclusion ............................................... 273
References .................................................... 274

Part IV  Economics and Eco-efficiency Analyses ................ 277

13 The Economic Potential of Microreaction Technology ......... 279
   Dana Kralisch, Ulrich Krtschil, Dominique M. Roberge,
   Volker Hessel, and Dirk Schmalz
13.1 Introduction ............................................. 279
13.2 Potential Evaluation of Microreaction Technology at the
     Stage of Process Development ............................. 280
     13.2.1 Introduction to Potential Evaluation Methodology .. 280
     13.2.2 Reaction .......................................... 281
     13.2.3 Theoretical Potential ............................. 281
     13.2.4 Technical Potential ............................... 282
     13.2.5 Material Potential ................................ 282
     13.2.6 Economic Potential ................................ 283
13.3 Current Benefits and Drawbacks of Microreaction
     Technology in Commercial-Scale Production ................ 283
13.4 Cause variables of Profitable Production of
     Microstructures .......................................... 287
     13.4.1 Introduction ...................................... 287
     13.4.2 Cost Calculation Methodology ...................... 287
     13.4.3 Chemical Reaction Investigated .................... 288
     13.4.4 Cost Analysis of the Existing Microchemical
            Process ........................................... 288
     13.4.5 Influence of Possible Improvements on the
            Manufacturing Costs ............................... 289
     13.4.6 Cost Analysis of the Aqueous Kolbe-Schmitt
            Synthesis of 2,4-Dihydroxybenzoic Acid ............ 290
13.5 Conclusion ............................................... 291
13.6 Outlook .................................................. 293
References .................................................... 294

14 Life Cycle Assessment of Microreaction Technology Versus
   Batch Technology - a Case Study ............................ 295
   Dana Kralisch
14.1 Introduction to Life Cycle Assessment Methodology ........ 295
14.2 Environmentally Relevant Characteristics of
     Microstractured Devices .................................. 296
14.3 The Model Reaction ....................................... 297
14.4 Evaluation of Alternative Systems ........................ 297
     14.4.1 Laboratory-scale Synthesis ........................ 297
     14.4.2 Life Cycle Inventory on the Laboratory Scale ...... 298
     14.4.3 Selected Results of the Life Cycle Impact
            Assessment on the Laboratory Scale ................ 299
     14.4.4 Industrial-scale Synthesis ........................ 302
     14.4.5 Inventory Analysis on the Industrial Scale ........ 303
     14.4.6 Selected Results of the Life Cycle Impact
            Assessment on the Industrial Scale ................ 303
14.5 Conclusions .............................................. 306
References .................................................... 307

15 Exergy Analysis of a Micro Fuel Processing System for
   Hydrogen and Electricity Production - A Case Study ......... 309
   Krzysztof J. Ptasinski
15.1 Introduction ............................................. 309
     15.1.1 Need for a Fuel Processor for Hydrogen
            Generation ........................................ 309
     15.1.2 Integrated Fuel Processor-Fuel Cell (FP-FC)
            System ............................................ 310
     15.1.3 Goal .............................................. 310
15.2 Thermodynamic Evaluation of FP-FC Systems ................ 311
     15.2.1 Methanol Processor Integrated with РЕМ Fuel Cell .. 311
     15.2.2 Maximum Electricity Generation from Various
            Fuels ............................................. 312
15.3 Exergetic Analysis of Integrated FP-FC Systems ........... 314
     15.3.1 Design of Methanol FP Integrated with FC .......... 314
     15.3.2 Exergy Concept .................................... 316
     15.3.3 Exergy Efficiency and Exergy Losses ............... 317
     15.3.4 Optimization of the FP-FC System .................. 319
15.4 Discussion ............................................... 319
     15.4.1 Exergetic Comparison Between FP-FC Systems and
            Alternatives ...................................... 320
     15.4.2 Other Criteria to Compare FP-FC Systems with
            Alternatives ...................................... 323
15.5 Conclusion ............................................... 324
References .................................................... 324

Index ......................................................... 325


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:34 2019. Размер: 30,256 bytes.
Посещение N 1876 c 24.09.2013