Preface ........................................................ XV
About the Editors ............................................ XVII
List of Contributors .......................................... XIX
Part I Microreactor Systems Design and Scale-up ................ 1
1 Structured Multi-scale Process Systems Design and
Engineering - The Role of Microreactor Technology in
Chemical Process Design ...................................... 3
Michael Matlosz, Laurent Falk, and Jean-Marc Commenge
1.1 Introduction ............................................... 3
1.2 Multi-scale Structuring for Sustainable Intensification/
Miniaturization ............................................ 6
1.2.1 Multi-scale Design that Reconciles Intensification
with Sustainability ................................. 7
1.2.2 Detailed Comparison ................................ 10
1.2.2.1 Fed-batch Reactor ......................... 10
1.2.2.2 Tubular Reactor ........................... 12
1.2.2.3 Comparison of Continuous and Fed-batch
Reactors .................................. 13
1.2.2.4 A Possible Solution: Multi-scale Design ... 13
1.3 Multi-scale Design: Requirements and Developments ......... 15
1.3.1 Scale-up by Modeling ............................... 16
1.3.2 Numbering-up by Replication ........................ 17
1.3.3 Structured Multi-scale Design: a New Hybrid
Approach ........................................... 18
1.4 Conclusion ................................................ 19
References ..................................................... 20
2 Reaction and Process System Analysis, Miniaturization and
Intensification Strategies .................................. 23
Jean-Marc Commenge and Laurent Falk
2.1 Introduction .............................................. 23
2.2 Reactor Analysis for Further Intensification .............. 24
2.2.1 Analysis of the Limiting Phenomenon ................ 24
2.2.2 The Reference Time ................................. 25
2.2.3 The Fundamental Characteristic Times ............... 26
2.2.4 Relation Between System Efficiency and
Characteristic Times
2.2.5 Times Grading and Scale Dependence of the
Phenomena Hierarchy ................................ 29
2.2.6 The Global Operation Time as a Result of the
Couplings .......................................... 31
2.2.7 Comparison of the Global Time with the
Fundamental Times
2.2.8 Effects Related to the Control of the Phenomena
Hierarchy .......................................... 33
2.3 Examples .................................................. 33
2.3.1 Scales of Homogeneous Chemistry .................... 33
2.3.2 Competitive Reactions and Mass-transfer Effect ..... 35
2.4 Miniaturization and Intensification Strategies ............ 37
2.4.1 Miniaturization without Hierarchy Change ........... 38
2.4.2 Miniaturization with Hierarchy Change .............. 40
2.4.3 Other Intensification Strategies ................... 41
References ..................................................... 42
3 Principles and Guidelines for Selection of Microstructured
Devices for Mixing and Reaction ............................. 43
Günter Tekautz, Barbara Zechner, Lukas E. Wiesegger, and
Dirk Kirschneck
3.1 Introduction .............................................. 43
3.2 Liquid-Liquid Reactions ................................... 44
3.2.1 Introductory Remarks ............................... 44
3.2.2 Classification of Microreactors -
Phase-contacting Principles ........................ 44
3.2.3 Criteria for Reactor Selection ..................... 45
3.2.3.1 Process Parameters (Temperature,
Pressure, Throughput) ..................... 45
3.2.3.2 Mixing Performance ........................ 46
3.2.3.3 Residence Time Distribution ............... 47
3.2.3.4 Ability for Scale-up or Scale-out ......... 48
3.2.3.5 Usability ................................. 49
3.2.3.6 Reactor Material .......................... 49
3.2.4 Liquid-Solid Reactions ............................. 50
3.3 Gas-Liquid Reactions ...................................... 51
3.3.1 Introductory Remarks ............................... 51
3.3.2 Classification of Microreactors -
Phase-contacting Principles ........................ 51
3.3.2.1 Continuous-Continuous Phase (Type A) ...... 51
3.3.2.2 Disperse-Continuous Phase (Type B) ........ 52
3.3.3 Criteria for Reactor Selection ..................... 53
3.3.3.1 Process Parameters (Temperature,
Pressure, Throughput) ..................... 53
3.3.3.2 Reaction and Fluid Properties ............. 54
3.3.3.3 Reactor Material .......................... 54
3.3.3.4 Affordability, Reliability and
Sustainability ............................ 55
3.3.3.5 Ability for Scale-up or Scale-out ......... 56
3.3.4 Microreactors for Gas-Liquid Contacting ............ 56
3.4 Catalytic Gas-phase Reactions ............................. 58
3.4.1 Introductory Remarks ............................... 58
3.4.2 Classification of Microreactors - Phase-
contacting Principles .............................. 60
3.4.2.1 Packed-bed Microreactors .................. 60
3.4.2.2 Catalytic Wall Microreactors .............. 61
3.4.2.3 Catalytic Bed Microreactors ............... 61
3.4.3 Criteria for Reactpr Selection ..................... 61
3.4.3.1 Reactor Material .......................... 64
3.4.3.2 Control of Critical Parameters ............ 64
3.4.3.3 Pressure Drop ............................. 65
3.4.3.4 Reactor Handling .......................... 65
3.4.3.5 Residence Time ............................ 65
3.4.3.6 Catalyst Deposition and Characterization .. 65
3.4.4 Purchasable Microreactors .......................... 66
References ..................................................... 67
4 Catalyst Development, Screening and Optimization ............ 75
André C. van Veen, Yirk Schuurman, and Claude Mirodatos
4.1 Introduction .............................................. 75
4.1.1 Impact of Fuel Nature .............................. 75
4.1.2 General Features of Coatings ....................... 77
4.1.3 On-board Systems Integration and Requirements ...... 77
4.1.4 Laboratory-scale Requirements ...................... 78
4.2 Catalyst Developments: Requirements and Implemented
Techniques for Microstructure Coating ..................... 79
4.2.1 Specificity of Characterization Tools for Coated
Catalysts .......................................... 79
4.2.2 Coating Stability and Adhesion: State of the Art ... 80
4.2.2.1 State of the Art in Durable Coating
Techniques from a Catalyst Designer's
Viewpoint ................................. 80
4.2.3 Characterization of Coating Adhesion ............... 81
4.2.4 Deposition Techniques .............................. 82
4.2.4.1 Washcoating ............................... 82
4.2.4.2 Sol-Gel and CVD Methods ................... 85
4.2.5 Other Requirements for Coating Optimization ........ 87
4.3 Catalyst Screening in MSRs and Optimization from
Reaction Modeling ......................................... 88
4.3.1 Catalyst Performance Testing in MSRs ............... 88
4.3.1.1 Examples of Reforming in MSRs ............. 88
4.3.1.2 Examples of CO Clean-up in MSRs ........... 89
4.3.2 Microstructured Reactors as Kinetic Devices ........ 90
4.3.2.1 Criteria for Proper Reactor Operation ..... 90
4.3.2.2 Existing Links Between Kinetics and
Catalyst Preparation in MSRs? ............. 93
4.4 Conclusions and Perspectives ......................... 94
References ..................................................... 96
Part II Sensing, Analysis, and Control ........................ 99
5 Microtechnology and Process Analytics ...................... 101
Melvin V. Koch and Ray W. Chrisman
5.1 Introduction ............................................. 101
5.2 Information Sharing in the Process Analytics Field ....... 104
5.3 Characterization Needs for Microsystems .................. 106
5.4 Sampling Specifics for Microscale Systems ................ 108
5.5 Advantages of Using Microscale Systems for Process
Development .............................................. 110
5.6 Overview of Chemometrics in Process Analytics ............ 110
5.7 New Sampling and Sensor Initiative ....................... 112
5.8 Various New Analytical Approaches that are Suited to
Microscale Systems ....................................... 113
5.9 Conclusion ............................................... 118
References .................................................... 119
6 Optical In-line Spectroscopy in Microchemical Processes .... 121
Wolfgang Ferstl
6.1 Introduction ............................................. 121
6.2 Optical Spectroscopy in Microchemical Processes .......... 122
6.2.1 Spectroscopic Methods ............................. 122
6.2.2 Integration of Spectroscopic Techniques into
a Microchemical Process ........................... 124
6.3 Data Generation Using Optical In-line Spectroscopy ....... 125
6.3.1 Non-concentration-based Information ............... 125
6.3.2 In-line Quantification in Microchemical
Processes ......................................... 126
6.3.2.1 Classical (Univariate) Quantification .... 128
6.3.2.2 Multivariate Quantification of Complex
Reaction Mixtures ........................ 130
6.4 Conclusions .............................................. 133
References .................................................... 133
7 On-line Monitoring of Reaction Kinetics in Microreactors
Using Mass Spectrometry and Micro-NMR Spectroscopy ......... 135
Jacob Bart and Han Gardenien
7.1 Introduction ............................................. 135
7.2 On-line Monitoring by Micro-NMR Spectroscopy ............. 136
7.2.1 Introduction ...................................... 136
7.2.2 NMR Sensitivity ................................... 137
7.2.3 Spectral Resolution ............................... 137
7.2.3.1 Probe-induced Line Broadening ............ 137
7.2.3.2 Sample-induced Line Broadening ........... 138
7.2.4 Approaches to High-resolution Micro-NMR ........... 138
7.2.4.1 Solenoids ................................ 138
7.2.4.2 Planar Microcoils ........................ 139
7.2.5 On-line NMR Monitoring ............................ 140
7.2.5.1 Flow Effects ............................. 142
7.2.5.2 NMR Detection of Capillary Separations:
LC-NMR ................................... 142
7.2.5.3 NMR Detection of Capillary Separations:
CE-NMR ................................... 143
7.2.5.4 Reaction Kinetics ........................ 143
7.2.5.5 Protein Folding Kinetics ................. 146
7.3 Monitoring of Reaction Kinetics Using MS ................. 147
7.3.1 Introduction ...................................... 147
7.3.2 Gas-phase Reactions in Microreactors Studied by
MS ................................................ 149
7.3.3 Liquid-phase Reactions Using an Electrospray
Interface to MS ................................... 151
7.3.4 Liquid-phase Reactions Studied by MALDI-MS ........ 153
7.4 Conclusions and Outlook ............................. 155
References .................................................... 156
8 Automation and Control of Microprocess Systems ............. 159
Thomas Bayer and Olaf Stange
8.1 Introduction ............................................. 159
8.2 Automation in Laboratories ............................... 160
8.2.1 Example: HiTec Zang LAB-manager and LAB-box ....... 160
8.2.2 Example: Siemens SIMATIC PCS7 LAB ................. 163
8.3 Automation in Production ................................. 165
8.4 Special Requirements for Automation in Microprocess
Technology ............................................... 167
8.5 Process Instrumentation for Microprocess Technology ...... 168
8.5.1 Temperature Measurement ........................... 168
8.5.2 Pressure Measurement .............................. 168
8.5.3 Flow Measurement .................................. 169
8.6 On-line Analysis for Microprocess Technology ............. 170
8.6.1 pH Measurement .................................... 171
8.6.2 Spectroscopic Methods ............................. 171
8.6.3 Gas Chromatography (GC) ........................... 171
8.7 Automation of Microprocess Systems for Process
Development and Production ............................... 173
8.7.1 MikroSyn from Mikroglas ........................... 174
8.7.2 Modular Microreaction System from Ehrfeld
Mikrotechnik BTS .................................. 175
8.7.3 SIPROCESS from Siemens ............................ 177
8.8 Conclusion ............................................... 178
Further Reading ............................................... 179
Part III Microreactor Plants: Case Studies ................... 181
9 Industrial Microreactor Process Development up to
Production ................................................. 183
Volker Hessel, Patrick Löb, and Holger Löwe
9.1 Mission Statement from Industry on Impact and Hurdles .... 183
9.2 Screening Studies in Laboratory .......................... 185
9.2.1 Peptide Synthesis ................................. 185
9.2.2 Hantzsch Synthesis ................................ 187
9.2.3 Knorr Synthesis ................................... 188
9.2.4 Enamine Synthesis ................................. 189
9.2.5 Aldol Reaction .................................... 190
9.2.6 Wittig Reaction ................................... 190
9.2.7 Polyethylene Formation ............................ 191
9.2.8 Diastereoselective Alkylation ..................... 192
9.2.9 Multistep Synthesis of a Radiolabeled Imaging
Probe ............................................. 193
9.3 Process Development at Laboratory Scale .................. 195
9.3.1 Nitration of Substituted Benzene Derivatives ...... 195
9.3.2 Phenyl Boronic Acid Synthesis ..................... 196
9.3.3 Azo Pigment Yellow 12 Manufacture ................. 198
9.3.4 Desymmetrization of Thioureas ..................... 198
9.3.5 Vitamin Precursor Synthesis ....................... 200
9.3.6 Ester Hydrolysis to Produce an Alcohol ............ 200
9.3.7 Synthesis of Methylenecyclopentane ................ 201
9.3.8 Condensation of 2-Trimethylsilylethanol ........... 201
9.3.9 (S)-2-Acetyl Tetrahydrofuran Synthesis ............ 201
9.3.10 Synthesis of Intermediate for Quinolone
Antibiotic Drug ................................... 202
9.3.11 Domino Cycloadditions in Parallel Fashion ......... 203
9.3.12 Ciprofloxazin Multistep Synthesis ................. 205
9.3.13 Methyl Carbamate Synthesis ........................ 205
9.3.14 Newman-Kuart Rearrangement ........................ 206
9.3.15 Ring-expansion Reaction of N-Boc-4-piperidone ..... 207
9.3.16 Grignard and Organolithium Reagents ............... 208
9.4 Pilots Plants and Production ............................. 210
9.4.1 Hydrogen Peroxide Synthesis ....................... 210
9.4.2 Diverse Case Studies at Lonza ..................... 212
9.4.3 Polyacrylate Formation ............................ 214
9.4.4 Butyl Lithium-based Alkylation Reactions .......... 215
9.4.5 German Project Cluster 2005 ....................... 217
9.4.6 Development for OLED Materials Production ......... 218
9.4.7 Development for Liquid/Liquid and Gas/Liquid
Fine Chemicals Production ......................... 218
9.4.8 Development of Pharmaceutical Intermediates
Production by Ozonolysis and Halogenation ......... 219
9.4.9 Industrial Photochemistry ......................... 222
9.4.10 Development of Ionic Liquid Production ............ 223
9.4.11 Japanese Project Cluster 2002 ..................... 223
9.4.12 Pilot Plant for MMA Manufacture ................... 224
9.4.13 Grignard Exchange Reaction ........................ 225
9.4.14 Halogen-Lithium Exchange Pilot Plant .............. 226
9.4.15 Swern-Moffat Oxidation Pilot Plant ................ 228
9.4.16 Yellow Nano Pigment Plant ......................... 229
9.4.17 Polycondensation .................................. 229
9.4.18 Friedel-Crafts Alkylation ......................... 231
9.4.19 H202 Based Oxidation to 2-Methyl-l,4-
naphthoquinone .................................... 232
9.4.20 Direct Fluorination of Ethyl 3-Oxobutanoate ....... 233
9.4.21 Propene Oxide Formation ........................... 234
9.4.22 Diverse Industrial Pilot-oriented Involvements .... 236
9.4.23 Production of Polymer Intermediates ............... 237
9.4.24 Synthesis of Diazo Pigments ....................... 238
9.4.25 Nitroglycerine Production ......................... 240
9.4.26 Fine Chemical Production Process .................. 241
9.4.27 Grignard-based Enolate Formation .................. 242
9.5 Challenges and Concerns .................................. 243
References .................................................... 244
10 Microreactor Plant for the Large-scale Production of a
Fine Chemical Intermediate: a Technical Case Study ......... 249
P. Poechlauer, M. Vorbach, M. Kotthaus, S. Braune,
R. Reintjens, F. Mascarello, and G. Kwant
10.1 Introduction ............................................. 249
10.2 Problem Description ...................................... 250
10.3 Solution Methodology ..................................... 251
10.4 Experimental ............................................. 251
10.5 Results of Laboratory-scale Development .................. 252
10.6 Design ................................................... 252
10.7 Operation ................................................ 254
10.8 Conclusion and Outlook ................................... 254
11 Development and Scale-up of a Microreactor Pilot Plant
Using the Concept of Numbering-up .......................... 255
Shigenori Togashi
11.1 Introduction ............................................. 255
11.2 Microreactor Unit ........................................ 256
11.2.1 Configuration ..................................... 256
11.2.2 Chemical Performance Evaluation ................... 256
11.3 Pilot Plant .............................................. 258
11.3.1 Numbering-up ...................................... 258
11.3.2 Flow Performance Evaluation ....................... 260
11.3.3 Chemical Performance Evaluation ................... 260
11.4 Conclusion ............................................... 261
References .................................................... 261
12 Microstructures as a Tool for Production in the Tons per
Hour Scale ................................................. 263
Dirk Kirschneck and Günter Tekautz
12.1 Introduction ............................................. 263
12.1.1 Driving Forces for Using Microstructures .......... 263
12.1.2 Important Impacts on the Development Process ...... 264
12.1.3 Small-scale Production Solutions .................. 265
12.1.4 Multi-purpose or Dedicated for Small Volumes ...... 266
12.1.5 Microstructures as a Production-scale Solution .... 267
12.2 Production-scale Case Study .............................. 268
12.2.1 The Batch Process ................................. 268
12.2.2 Basic Feasibility ................................. 268
12.2.3 StarLam Concept ................................... 269
12.2.4 Laboratory-scale Plant ............................ 270
12.2.5 Optimization and Integration ...................... 270
12.2.6 Summary ........................................... 272
12.3 Conclusion ............................................... 273
References .................................................... 274
Part IV Economics and Eco-efficiency Analyses ................ 277
13 The Economic Potential of Microreaction Technology ......... 279
Dana Kralisch, Ulrich Krtschil, Dominique M. Roberge,
Volker Hessel, and Dirk Schmalz
13.1 Introduction ............................................. 279
13.2 Potential Evaluation of Microreaction Technology at the
Stage of Process Development ............................. 280
13.2.1 Introduction to Potential Evaluation Methodology .. 280
13.2.2 Reaction .......................................... 281
13.2.3 Theoretical Potential ............................. 281
13.2.4 Technical Potential ............................... 282
13.2.5 Material Potential ................................ 282
13.2.6 Economic Potential ................................ 283
13.3 Current Benefits and Drawbacks of Microreaction
Technology in Commercial-Scale Production ................ 283
13.4 Cause variables of Profitable Production of
Microstructures .......................................... 287
13.4.1 Introduction ...................................... 287
13.4.2 Cost Calculation Methodology ...................... 287
13.4.3 Chemical Reaction Investigated .................... 288
13.4.4 Cost Analysis of the Existing Microchemical
Process ........................................... 288
13.4.5 Influence of Possible Improvements on the
Manufacturing Costs ............................... 289
13.4.6 Cost Analysis of the Aqueous Kolbe-Schmitt
Synthesis of 2,4-Dihydroxybenzoic Acid ............ 290
13.5 Conclusion ............................................... 291
13.6 Outlook .................................................. 293
References .................................................... 294
14 Life Cycle Assessment of Microreaction Technology Versus
Batch Technology - a Case Study ............................ 295
Dana Kralisch
14.1 Introduction to Life Cycle Assessment Methodology ........ 295
14.2 Environmentally Relevant Characteristics of
Microstractured Devices .................................. 296
14.3 The Model Reaction ....................................... 297
14.4 Evaluation of Alternative Systems ........................ 297
14.4.1 Laboratory-scale Synthesis ........................ 297
14.4.2 Life Cycle Inventory on the Laboratory Scale ...... 298
14.4.3 Selected Results of the Life Cycle Impact
Assessment on the Laboratory Scale ................ 299
14.4.4 Industrial-scale Synthesis ........................ 302
14.4.5 Inventory Analysis on the Industrial Scale ........ 303
14.4.6 Selected Results of the Life Cycle Impact
Assessment on the Industrial Scale ................ 303
14.5 Conclusions .............................................. 306
References .................................................... 307
15 Exergy Analysis of a Micro Fuel Processing System for
Hydrogen and Electricity Production - A Case Study ......... 309
Krzysztof J. Ptasinski
15.1 Introduction ............................................. 309
15.1.1 Need for a Fuel Processor for Hydrogen
Generation ........................................ 309
15.1.2 Integrated Fuel Processor-Fuel Cell (FP-FC)
System ............................................ 310
15.1.3 Goal .............................................. 310
15.2 Thermodynamic Evaluation of FP-FC Systems ................ 311
15.2.1 Methanol Processor Integrated with РЕМ Fuel Cell .. 311
15.2.2 Maximum Electricity Generation from Various
Fuels ............................................. 312
15.3 Exergetic Analysis of Integrated FP-FC Systems ........... 314
15.3.1 Design of Methanol FP Integrated with FC .......... 314
15.3.2 Exergy Concept .................................... 316
15.3.3 Exergy Efficiency and Exergy Losses ............... 317
15.3.4 Optimization of the FP-FC System .................. 319
15.4 Discussion ............................................... 319
15.4.1 Exergetic Comparison Between FP-FC Systems and
Alternatives ...................................... 320
15.4.2 Other Criteria to Compare FP-FC Systems with
Alternatives ...................................... 323
15.5 Conclusion ............................................... 324
References .................................................... 324
Index ......................................................... 325
|