Micro process engineering: a comprehensive handbook; vol.1: Fundamentals, operations and catalysts (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMicro process engineering: a comprehensive handbook. Vol.1: Fundamentals, operations and catalysts / ed. by V.Hessel et al. - Weinheim: Wiley-VCH, 2009. - xxii, 493 p.: ill. - Incl. bibl. ref. - Ind.: p.481-493. - ISBN 978-3-527-31550-5
 

Место хранения: 042 | Институт химии нефти СО РАН | Томск

Оглавление / Contents
 
Preface ........................................................ XV
About the Editors ............................................ XVII
List of Contributors .......................................... XIX

Part I  Fluid Dynamics in Microchannels ......................... 1

1  Multiphase Flow .............................................. 3
   Axel Günther and Michiel T. Kreutzer
1.1  Introduction ............................................... 3
1.2  Fundamentals of Multiphase Flow ............................ 4
     1.2.1  Properties of Fluids and Interfaces ................. 5
            1.2.1.1  MicroChannel Surface Characteristics and
                     Wetting .................................... 6
            1.2.1.2  Scaling of Forces .......................... 7
            1.2.1.3  Surface Tension Variations ................. 8
            1.2.1.4  Particles and Fluid Interfaces ............. 8
     1.2.2  Classification of Phase Distributions ............... 9
1.3  Dynamic Behavior of Multiphase Microflows .................. 9
     1.3.1  Flow Instabilities ................................. 10
            1.3.1.1  Capillary Instability ..................... 10
            1.3.1.2  Deformation of Stratified Liquid Layers ... 12
     1.3.2  Multiphase Flow Regimes ............................ 12
     1.3.3  Formation of Multiphase Flow ....................... 15
     1.3.4  Susceptibility of Multiphase Flow to Pressure
            Fluctuations
     1.3.5  Separation of Phases ............................... 16
1.4  Role of Channel Geometries ................................ 17
1.5  Experimental and Numerical Techniques ..................... 20
     1.5.1  Numerical .......................................... 20
     1.5.2  Experimental ....................................... 20
            1.5.2.1  Brightfield Microscopy .................... 21
            1.5.2.2  Fluorescence Microscopy ................... 21
            1.5.2.3  Particle Tracking and Particle Image
                     Velocimetry ............................... 23
            1.5.2.4  Confocal Microscopy ....................... 24
            1.5.2.5  Flow Sensors .............................. 24
            1.5.2.6  Magnetic Resonance Imaging ................ 24
            1.5.2.7  X-ray Tomography .......................... 25
1.6  Annular and Stratified Two-phase Flows .................... 25
1.7  Droplet and Bubble Flows .................................. 26
     1.7.1  Lubrication Analysis ............................... 26
     1.7.2  Pressure Drop in Segmented-flow Microfluidic
            Networks ........................................... 28
1.8  Practical Aspects of Microfluidic Networks ................ 28
     1.8.1  Parallel Scaling ................................... 28
     1.8.2  Using Multiphase Flows for Controlling Fluid
            Paths .............................................. 30
References ..................................................... 32

2  Microfluidic Networks ....................................... 41
   Norbert Kockmann
2.1  Introduction .............................................. 41
2.2  Fluid Mechanics ........................................... 41
2.3  Basic Channel Structures .................................. 44
2.4  Network Design ............................................ 46
2.5  Lumped Element Modeling ................................... 48
2.6  Parallel Channel Devices .................................. 52
2.7  Headers and Manifold for Plate Stacks ..................... 54
2.8  Conclusion ................................................ 56
References ..................................................... 58

3  Boiling and Two-phase Flow in Microchannels ................. 61
John R. Thome and Cherhardt Ribatski
3.1  Introduction .............................................. 61
3.2  Macro-to-Microscale Transition ............................ 62
3.3  Flow Patterns in Microscale Channels ...................... 63
3.4  Pressure Drop ............................................. 66
3.5  Boiling Heat Transfer ..................................... 67
3.6  Critical Heat Flux ........................................ 70
3.7  Two-phase Flow Instabilities .............................. 72
3.8  Prediction Methods ........................................ 76
     3.8.1  Frictional Pressure Drop ........................... 76
     3.8.2  Heat Transfer ...................................... 78
     3.8.3  Critical Heat Flux ................................. 82
References ..................................................... 87

4  Microscale Flow Visualization ............................... 93
   Marko Hoffmann, Michael Schlüter, and Norbert Räbiger
4.1  Introduction .............................................. 93
4.2  Fundamentals .............................................. 94
4.3  Visualization of Flow Fields in Micro-and Minichannels .... 95
     4.3.1  Microparticle Image Velocimetry (μ-PiV) ............ 95
            4.3.1.1  Correlation Averaging Method .............. 96
            4.3.1.2  3D Reconstruction ......................... 98
            4.3.1.3  Accuracy of μ-PIV Measurements ............ 99
            4.3.1.4  Depth of Correlation ..................... 100
            4.3.1.5  Brownian Motion .......................... 101
     4.3.2  Extension of Common μ-PIV for Enhancement of
            Spatial and Temporal Resolution ................... 102
            4.3.2.1  Multiphase Flow .......................... 102
     4.3.3  Confocal Microparticle Image Velocimetry .......... 103
     4.3.4  Stereoscopic Microparticle Image Velocimetry ...... 104
     4.3.5  3D Particle Tracking Velocimetry .................. 105
4.4  Visualization of Concentration and Temperature Fields
     in Micro- and Minichannels ............................... 106
     4.4.1  Analysis of Concentration Fields .................. 107
     4.4.2  Analysis of Temperature Fields .................... 109
     4.4.3  Visualization of Mixing Processes Without
            Chemical Reactions ................................ 110
     4.4.4  Visualization of Reactive Mixing .................. 110
     4.5  Conclusion .......................................... 113
     References ............................................... 113

5  Modeling of Microfluidic Devices ........................... 117
   David F. Fletcher, Brian S. Haynes, Joëlle Aubin, and
   Catherine Xuereb
5.1  Introduction ............................................. 117
5.2  Characteristics of Microsystems .......................... 117
     5.2.1  Non-continuum Effects ............................. 118
     5.2.2  Laminar Flow ...................................... 118
     5.2.3  Surface Roughness ................................. 119
     5.2.4  Viscous Energy Dissipation ........................ 120
     5.2.5  Gravitational Effects ............................. 120
     5.2.6  Electric Effects .................................. 121
     5.2.7  Surface Tension Effects ........................... 122
     5.2.8  WaU Slip Effects .................................. 123
5.3  The Importance of Appropriate Solution Methods ........... 124
     5.3.1  Conventional Navier-Stokes Solvers ................ 124
            5.3.1.1  Numerical Diffusion ...................... 124
            5.3.1.2  Interfacial Surface Location and
                     Parasitic Currents ....................... 125
            5.3.1.3  Heat Transfer Simulations ................ 126
     5.3.2  Advanced Solution Methods ......................... 126
5.4  Single-phase Simulations ................................. 127
     5.4.1  Heat Transfer Enhancement ......................... 127
     5.4.2  Mixing ............................................ 129
     5.4.3  Modeling of Mass Transfer and Chemical Reaction ... 133
5.5  Multi-phase Simulations .................................. 134
     5.5.1  Taylor Bubble Simulations ......................... 134
     5.5.2  Droplet Simulations ............................... 136
5.6  Summary and Perspective .................................. 138
References .................................................... 139

Part II  Mixing in Microsystems ............................... 145

6  Characterization of Mixing and Segregation in Homogeneous
   Flow Systems ............................................... 147
   Laurent Falk and Jean-Marc Commenge
6.1  Introduction ............................................. 147
6.2  Mixing Principles and Features of Microsystems ........... 148
     6.2.1  Molecular Diffusion ............................... 149
     6.2.2  Mixing in a Shear Field ........................... 150
     6.2.3  Application to Mixing in Microchannels ............ 151
     6.2.4  Chaotic Mixers .................................... 154
            6.2.4.1  Additional Readings: Chaotic Mixing
                     Model in Microchannels ................... 156
     6.2.5  Mixing Efficiency ................................. 158
6.3  Experimental Mixing Characterization ..................... 159
     6.3.1  Physical Methods .................................. 159
     6.3.2  Chemical Methods .................................. 161
     6.3.3  Villermaux-Dushman Reaction ....................... 162
     6.3.4  Mixing Time ....................................... 165
6.4  Comparison of Performances of Micromixers ................ 166
6.5  Conclusions .............................................. 170
References .................................................... 170

7  Passive and Active Micromixers ............................. 175
   Zhigang Wu and Nam-Trung Nguyen
7.1  Introduction ............................................. 175
7.2  Passive Micromixers ...................................... 177
     7.2.1  Parallel Lamination Micromixers ................... 177
     7.2.2  Serial Lamination Micromixers ..................... 183
     7.2.3  Micromixers Based on Chaotic Advection ............ 184
            7.2.3.1  Chaotic Advection at High Reynolds
                     Numbers .................................. 184
            7.2.3.2  Chaotic Advection at Intermediate
                     Reynolds Numbers ......................... 185
            7.2.3.3  Chaotic Advection at Low Reynolds
                     Numbers .................................. 186
     7.2.4  Droplet Micromixers ............................... 188
7.3  Active Micromixers ....................................... 190
     7.3.1  Pressure-induced Disturbance ...................... 190
     7.3.2  Electrohydrodynamic Disturbance ................... 191
     7.3.3  Magnetohydrodynamic Disturbance ................... 292
     7.3.4  Acoustic Disturbance .............................. 192
     7.3.5  Thermal Disturbance ............................... 193
7.4  Fabrication Methods ...................................... 194
7.5  Conclusion ............................................... 295
References .................................................... 197

8  Mixing and Contacting of Heterogeneous Systems ............. 205
   Asterios Gavriilidis and Panagiota Angeli
8.1  Gas-Liquid Systems ....................................... 207
     8.1.1  Segmented Flow Contactors ......................... 208
            8.1.1.1  Bubble Formation and Length .............. 209
            8.1.1.2  Hydrodynamics ............................ 210
            8.1.1.3  Bubble Shape and Film Thickness .......... 210
            8.1.1.4  Pressure Drop ............................ 211
            8.1.1.5  Mixing and Mass Transfer ................. 212
            8.1.1.6  Phase Separation ......................... 213
            8.1.1.7  Multichannel Systems ..................... 214
     8.1.2  Packed MicroChannel Contactors .................... 214
     8.1.3  Foam and Bubble Suspension Microcontactors ........ 216
            8.1.3.1  T-type Mixing Section Geometries ......... 216
            8.1.3.2  Flow Focusing Mixing Section Geometries .. 217
            8.1.3.3  Multichannel Systems ..................... 220
            8.1.3.4  Dispersion Effects ....................... 220
     8.1.4  Overlapping MicroChannel and Micromesh 
            Contactors ........................................ 221
     8.1.5  Falling Film MicroChannel Contactor ............... 223
8.2  Non-miscible Liquid-Liquid Systems ....................... 226
     8.2.1  Segmented Flow Contactors ......................... 228
            8.2.1.1  Slug/Plug Formation ...................... 228
            8.2.1.2  Hydrodynamics and Mixing ................. 230
            8.2.1.3  Pressure Drop ............................ 230
     8.2.2  Liquid-Liquid Dispersion Microcontactors .......... 231
            8.2.2.1  T-type and Co-flow Mixing Section
                     Geometries ............................... 231
            8.2.2.2  Flow Focusing Geometries ................. 234
            8.2.2.3  Multichannel Systems ..................... 235
     8.2.3  Overlapping MicroChannel and Micromesh 
            Contactors ........................................ 240
     References ............................................... 243

Part III  Heat/Mass Transfer .................................. 253
9  Heat Transfer in Homogeneous Systems ....................... 255
   Franz Trachsel and Philipp Rudolf von Rohr
9.1  Introduction ............................................. 255
9.2  Continuum Assumption ..................................... 256
     9.2.1  Gases ............................................. 257
     9.2.2  Liquids ........................................... 257
9.3  Heat Transfer in Homogeneous Microfluidic Systems ........ 259
9.4  Pronounced Effects in MicroChannel Heat Transfer ......... 261
     9.4.1  Axial Heat Conduction in the Fluid ................ 261
     9.4.2  Conjugate Heat Transfer ........................... 265
     9.4.3  Surface Roughness ................................. 266
     9.4.4  Viscous Dissipation ............................... 267
     9.4.5  Variation of Thermophysical Properties ............ 268
     9.4.6  Electric Double Layer ............................. 269
     9.4.7  Entrance Region ................................... 269
     9.4.8  Measurement Accuracy .............................. 270
9.5  Conventional Heat Transfer Correlations for Macroscale
     Tubes and Channels ....................................... 270
     9.5.1  Developing Hydrodynamic Regions of Laminar Flow ... 271
     9.5.2  Developing Thermal Flow ........................... 271
     9.5.3  Fully Developed Laminar Flow ...................... 271
            9.5.3.1  Constant Wall Temperature ................ 271
            9.5.3.2  Constant Heat Flux ....................... 272
     9.5.4  Turbulent Flow .................................... 272
            9.5.4.1  Transition Regime 2300 < Re < 104 ........ 274
9.6  Conclusion ............................................... 274
References .................................................... 279

10 Transport Phenomena in Microscale Reacting Flows ........... 283
   Niket S. Kaisare, Ceorgios D. Stefanidis, and Dionisios
   C. Vlachos
10.1 Introduction ............................................. 283
10.2 Spatial Gradients in Microchannels ....................... 284
     10.2.1 Axial Thermal Gradients ........................... 285
     10.2.2 Transverse External Thermal Gradients ............. 287
     10.2.3 Transverse External Mass Transfer ................. 287
     10.2.4 Internal Heat and Mass Transfer ................... 288
10.3 Thermal Radiation in Microchannels ....................... 289
10.4 Transverse Heat and Mass Transfer Correlations ........... 292
10.5 Homogeneous Microburners ................................. 293
     10.5.1 Effect of Transverse Transport on Flame
            Stability ......................................... 293
     10.5.2 Transverse Heat Transfer and Nusselt Number ....... 295
10.6 Catalytic Microreactors .................................. 296
10.7 Conclusions .............................................. 300
References .................................................... 301

11 Fluid-Fluid and Fluid-Solid Mass Transfer .................. 303
   Michiel T. Kreutzer and Axel Günther
11.1 Introduction ............................................. 303
     11.1.1 Relevance ......................................... 303
     11.1.2 Basics, Relevant Time Scales ...................... 304
11.2 Stable Fluid Interfaces: Annular Flows and Falling
     Films .................................................... 307
11.3 Droplet/Bubble Segmented Flows ........................... 309
     11.3.1 Fluid-Fluid Mass Transfer Without Reaction at the
            Wall .............................................. 311
     11.3.2 Continuous Phase to Wall Mass Transfer ............ 313
     11.3.3 Disperse Phase to Wall Mass Transfer .............. 314
11.4 Complex Geometries - Packed Beds and Foams ............... 317
References .................................................... 319

Part IV Microstructured Devices for Purification and
Separation Processes .......................................... 323
12 Extraction ................................................. 325
   Nobuaki Aoki and Kazuhiro Mae
12.1 Introduction ............................................. 325
12.2 Parallel Flow of Two Immiscible Phases ................... 325
     12.2.1 Instances of Extraction Systems and Devices
            Using Parallel Flow ............................... 326
     12.2.2 Surface Modification of Channel Geometry for
            Stabilizing Parallel Flow ......................... 329
     12.2.3 Application in Organic Synthesis .................. 330
12.3 Droplet Manipulation ..................................... 331
     12.3.1 Devices for Continuous Generation of Dispersed
            Droplets .......................................... 332
     12.3.2 Coalescence of Droplets in Dispersions ............ 333
     12.3.3 Precise Operation of Individual Droplets .......... 334
12.4 Liquid-Liquid Slug Flow .................................. 336
     12.4.1 Extraction Process Based on Slug Flow ............. 337
     12.4.2 Quantitative Study of Mass Transfer in Slug
            Flow .............................................. 339
     12.4.3 Application of Mass Transfer in Slug Flow to
            Organic Synthesis ................................. 339
12.5 Conclusion ............................................... 341
References .................................................... 342

13 Capillary Electrochromatography ............................ 347
   Hans-Joerg Bart
13.1 Introduction ............................................. 347
13.2 Theory ................................................... 348
13.3 Stationary Phases ........................................ 353
     13.3.1 o-CEC Phases ...................................... 354
     13.3.2 Granular Packed Columns ........................... 354
     13.3.3 Monolithic Phases ................................. 355
13.4 Chip Electrochromatography ............................... 356
13.5 Conclusions and Perspectives ............................. 358
References .................................................... 358

Part V  Microstructured Reactors .............................. 365

14 Homogeneous Reactions ...................................... 367
   Volker Hessel and Patrick Löb
14.1 Benefits ................................................. 367
     14.1.1 Reaction Engineering Benefits ..................... 367
     14.1.2 Process Engineering Benefits ...................... 368
14.2 Reactor Concepts - the Tools for Process
     Intensification .......................................... 369
     14.2.1 Micromixers, Micro Heat Exchangers and
            Minitubes/Capillaries ............................. 369
     14.2.2 Integrated Reactors ............................... 370
14.3 Reaction Optimization .................................... 371
     14.3.1 Process Parameters with Impact on Reactor
            Performance ....................................... 372
     14.3.2 Residence Time Distribution ....................... 372
            14.3.2.1 RTD Studies on Liquid-phase Flows ........ 372
            14.3.2.2 RTD Studies on Gas-phase Flows ........... 374
     14.3.3 Impact of Mixing .................................. 375
     14.3.4 Impact of Heat Exchange ........................... 379
     14.3.5 Impact of Electromagnetic Waves and Alternative
            Energies .......................................... 380
14.4 Process Design ........................................... 380
     14.4.1 Combined Reaction-Separation ...................... 380
     14.4.2 Multi-step Reactions .............................. 381
14.5 Novel Process Windows .................................... 383
     14.5.1 High Temperatures - Rate Acceleration ............. 384
     14.5.2 High Pressures - Transition State Volume Effects .. 385
     14.5.3 Solventless and Solvent-free Operation ............ 385
     14.5.4 Exploration into Explosive and Thermal Runaway
            Regimes ........................................... 386
14.6 From Laboratory to Production Scale - Scale-out .......... 387
     14.6.1 Numbering-up ...................................... 387
     14.6.2 Internal Numbering-up or Equaling-up .............. 387
     14.6.3 External Numbering-up: Device Parallelization ..... 389
     14.6.4 Smart Scale-up .................................... 389
     14.6.5 Multi-scale Architecture .......................... 390
References .................................................... 390

15 Heterogeneous Multiphase Reactions ......................... 395
   Madhvanand N. Kashid, David W. Agar, Albert Renken, and
   Lioubov Kiwi-Minsker
15.1 Introduction ............................................. 395
15.2 General Criteria for Reactor Choice and Design ........... 397
15.3 Fluid-Solid Reactors ..................................... 398
     15.3.1 Pressure Drop ..................................... 399
     15.3.2 Residence Time Distribution ....................... 400
     15.3.3 Mass Transfer and Chemical Reaction ............... 404
15.4 Fluid-Fluid Reactors ..................................... 407
     15.4.1 Gas-Liquid Systems ................................ 407
            15.4.1.1 Pressure Drop ............................ 420
            15.4.1.2 Residence Time Distribution .............. 423
            15.4.1.3 Mass Transfer and Film Saturation ........ 426
     15.4.2 Liquid-Liquid Systems ............................. 428
            15.4.2.1 Pressure Drop ............................ 419
            15.4.2.2 Residence Time Distribution .............. 421
            15.4.2.3 Chemical Reaction in Liquid-Liquid
                     Systems .................................. 422
15.5 Three-phase Reactions .................................... 424
     15.5.1 Gas-Liquid-Solid .................................. 424
            15.5.1.1 Continuous-phase Microstructured
                     Reactors ................................. 427
            15.5.1.2 Dispersed-phase Microstructured
                     Reactors ................................. 428
     15.5.2 Gas-Liquid-Liquid Systems ......................... 430
15.6 Conclusion ............................................... 431
References .................................................... 435

16 Photoreactors .............................................. 441
   Roger Gorges and Andreas Kirsch
16.1 Photochemical Reactions .................................. 441
16.2 Single-phase Photochemical Reactions ..................... 442
16.3 Multi-phase Photochemical Reactions ...................... 447
16.4 Immobilized Photocatalysts ............................... 451
16.5 Conclusion ............................................... 455
References .................................................... 456

17 Microstructured Reactors for Electrochemical Synthesis ..... 459
   Sabine Rode and François Lapicque
17.1 Fundamentals of Electrochemical Processes ................ 459
     17.1.1 Electrode Reaction Stoichiometries and Faraday's
            Law ............................................... 460
     17.1.2 Electrode Potentials and Gibbs Free Energy
            Change of the Overall Reaction .................... 461
     17.1.3 Kinetics and Mass Transfer Limitations of the
            Electrode Reaction ................................ 461
     17.1.4 Process Performance Criteria ...................... 462
     17.1.5 Specific Energy Consumption and Cell Voltage ...... 463
     17.1.6 Ohmic Drop and Heat Generation .................... 463
17.2 Electrochemical Equipment and Process Flow Schemes ....... 464
     17.2.1 Some Overall Process Options ...................... 464
            17.2.1.1 Divided and Undivided Cells .............. 464
            17.2.1.2 Direct and Indirect Electrosynthesis ..... 465
            17.2.1.3 Simple and Paired Electrosynthesis ....... 465
     17.2.2 Typical Commercial Cells .......................... 465
            17.2.2.1 Tank Cells ............................... 465
            17.2.2.2 Filterpress-type Flow Cells .............. 466
            17.2.2.3 Cells with Parallel Electrodes and
                     a Millimeter or Submillimeter
                     Inter-electrode Gap ...................... 466
            17.2.2.4 Cells with Non-parallel Dissymmetric
                     Electrodes ............................... 467
     17.2.3 Process Flow Schemes .............................. 467
17.3 Microreactors in Electrochemical Synthesis ............... 468
     17.3.1 Process Intensification Mechanisms ................ 469
            17.3.1.1 Enhancement of the Mass Transfer Rates ... 469
            17.3.1.2 Coupling of the Electrode Processes ...... 469
            17.3.1.3 Reduction of the Ohmic Drop .............. 469
            17.3.1.4 Operation in Single-pass
                     High-conversion Mode ..................... 469
     17.3.2 Coplanar Interdigitated Microband Electrodes ...... 470
     17.3.3 Plate and Channel Microreactors ................... 472
            17.3.3.1 Reagent Flux and Applied Current ......... 471
            17.3.3.2 Mass Transfer Limitations and Reagent
                     Conversion ............................... 471
            17.3.3.3 Liquid-Solid Mass Transfer Coefficient
                     and Coupling of the Electrode Processes .. 472
            17.3.3.4 Increase in the Space-Time Yield at a
                     Constant Ohmic Penalty ................... 473
            17.3.3.5 Experimental Investigations Reported in
                     the Literature ........................... 473
            17.3.3.6 Reactor Model ............................ 476
17.4 Conclusion and Outlook ................................... 477
References .................................................... 479

Index ......................................................... 481


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:34 2019. Размер: 31,732 bytes.
Посещение N 1461 c 24.09.2013