Kirkwood J.R. Mathematical physics with partial differential equations (Waltham, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKirkwood J.R. Mathematical physics with partial differential equations. - Waltham: Academic Press, 2013. - xii, 418 p.: ill. - Ref.: p.413. - Ind.: p.415-418. - ISBN 978-0-12-386911-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi
1  Preliminaries ................................................ 1
   1-1  Self-Adjoint Operators .................................. 1
        Fourier  Coefficients ................................... 5
        Exercises .............................................. 11
   1-2  Curvilinear  Coordinates ............................... 14
        Scaling Factors ........................................ 17
        Volume  Integrals ...................................... 18
        The Gradient ........................................... 22
        The Laplacian .......................................... 23
        Spherical Coordinates .................................. 25
        Other Curvilinear  Systems ............................. 25
        Applications ........................................... 31
        An Alternate Approach (Optional) ....................... 33
        Exercises .............................................. 33
   1-3  Approximate Identities and the Dirac-6 Function ........ 34
        Approximate Identities ................................. 35
        The Dirac-δ Function in Physics ........................ 37
        Some Calculus for the Dirac-δ Function ................. 40
        The Dirac-δ Function in Curvilinear Coordinates ........ 42
        Exercises .............................................. 44
   1-4  The Issue of Convergence ............................... 45
        Series of Real Numbers ................................. 45
        Convergence versus Absolute Convergence ................ 47
        Series of Functions .................................... 48
        Power Series ........................................... 54
        Taylor Series .......................................... 56
        Exercises .............................................. 60
   1-5  Some Important Integration Formulas .................... 64
        Other Facts We Will Use Later .......................... 68
        Another Important Integral ............................. 69
        Exercises .............................................. 74
2  Vector Calculus ............................................. 73
   2-1  Vector Integration ..................................... 73
        Path Integrals ......................................... 74
        Line Integrals ......................................... 77
        Surfaces ............................................... 80
        Parameterized Surfaces ................................. 82
        Integrals of Scalar Functions Over Surfaces ............ 83
        Surface Integrals of Vector Functions .................. 85
        Exercises .............................................. 91
   2-2  Divergence and Curl .................................... 93
        Cartesian Coordinate Case .............................. 94
        Cylindrical Coordinate Case ............................ 97
        Spherical Coordinate Case ............................. 100
        The Curl .............................................. 104
        The Curl in Cartesian Coordinates ..................... 104
        The Curl in Cylindrical Coordinates ................... 109
        The Curl in Spherical Coordinates ..................... 114
        Exercises ............................................. 122
   2-3  Green's Theorem, the Divergence Theorem, and
        Stokes'Theorem ........................................ 122
        The Divergence (Gauss') Theorem ....................... 127
        Stokes' Theorem ....................................... 135
        An Application of Stokes' Theorem ..................... 140
        An Application of the Divergence Theorem .............. 141
        Conservative Fields ................................... 142
        Exercises ............................................. 148
3  Green's Functions .......................................... 155
   Introduction ............................................... 155
   3-1  Construction of Green's Function Using the Dirac-δ
        Function .............................................. 156
        Exercises ............................................. 164
   3-2  Construction of Green's Function Using Variation of
        Parameters ............................................ 164
        Exercises ............................................. 168
   3-3  Construction of Green's Function from Eigenfunctions .. 168
        Exercises ............................................. 171
   3-4  More General Boundary Conditions ...................... 171
        Exercises ............................................. 173
   3-5  The Fredholm Alternative (or, What If 0 Is an
        Eigenvalue?) .......................................... 173
        Exercises .. 180
   3-6  Green's Function for the Laplacian in Higher
        Dimensions ............................................ 180
        Exercises ............................................. 186
4  Fourier Series ............................................. 187
   Introduction ............................................... 187
   4-1  Basic Definitions ..................................... 188
        Exercises ............................................. 191
   4-2  Methods of Convergence of Fourier Series .............. 193
        Fourier Series on Arbitrary Intervals ................. 203
        Exercises ............................................. 204
   4-3  The Exponential Form of Fourier Series ................ 206
        Exercises ............................................. 207
   4-4  Fourier Sine and Cosine Series ........................ 208
        Exercises ............................................. 210
   4-5  Double Fourier Series ................................. 210
        Exercise .............................................. 212
5  Three Important Equations .................................. 213
   Introduction ............................................... 213
   5-1  Laplace's Equation .................................... 215
        Exercises ............................................. 216
   5-2  Derivation of the Heat Equation in One Dimension ...... 216
        Exercise .............................................. 218
   5-3  Derivation of the Wave Equation in One Dimension ...... 218
        Exercises ............................................. 222
   5-4  An Explicit Solution of the Wave Equation ............. 222
        Exercises ............................................. 227
   5-5  Converting Second-Order PDEs to Standard Form ......... 228
   Exercise ................................................... 232
6  Sturm-Liouville Theory ..................................... 233
   Introduction ............................................... 233
   Exercises .................................................. 234
   6-1  The Self-Adjoint Property of a Sturm-Liouville
        Equation .............................................. 234
        Exercises ............................................. 236
   6-2  Completeness of Eigenfunctions for Sturm-Liouville
        Equations ............................................. 237
        Exercises ............................................. 245
   6-3  Uniform Convergence of Fourier Series ................. 245
7  Separation of Variables in Cartesian Coordinates ........... 251
   Introduction ............................................... 251
   7-1  Solving Laplace's Equation on a Rectangle ............. 251
        Exercises ............................................. 256
   7-2  Laplace's Equation on a Cube .......................... 258
        Exercises ............................................. 261
   7-3  Solving the Wave Equation in One Dimension by
        Separation of Variables ............................... 262
        Exercises ............................................. 267
   7-4  Solving the Wave Equation in Two Dimensions in
        Cartesian Coordinates by Separation of Variables ...... 269
        Exercises ............................................. 271
   7-5  Solving the Heat Equation in One Dimension Using
        Separation of Variables ............................... 271
        The Initial Condition Is the Dirac-6 Function ......... 274
        Exercises ............................................. 276
   7-6  Steady State of the Heat Equation ..................... 277
        Exercises ............................................. 281
   7-7  Checking the Validity of the Solution ................. 283
8  Solving Partial Differential Equations in Cylindrical
   Coordinates Using Separation of Variables .................. 287
   Introduction ............................................... 287
   An Example Where Bessel Functions Arise .................... 287
   Exercises .................................................. 292
   8-1  The Solution to Bessel's Equation in Cylindrical
        Coordinates ........................................... 292
        Exercises ............................................. 294
   8-2  Solving Laplace's Equation in Cylindrical Coordinates
        Using Separation of Variables ......................... 295
        Exercises ............................................. 299
   8-3  The Wave Equation on a Disk (Drum Head Problem) ....... 299
        Exercises ............................................. 303
   8-4  The Heat Equation on a Disk ........................... 303
        Exercises ............................................. 306
9 Solving Partial Differential Equations in Spherical
   Coordinates Using Separation of Variables .................. 307
   9-1  An Example Where Legendre Equations Arise ............. 307
   9-2  The Solution to Bessel's Equation in Spherical
        Coordinates ........................................... 310
   9-3  Legendre's Equation and Its Solutions ................. 315
        Exercises ............................................. 318
   9-4  Associated Legendre Functions ......................... 319
        Exercise .............................................. 322
   9-5  Laplace's Equation in Spherical Coordinates ........... 322
        Exercise .............................................. 325
10 The Fourier Transform ...................................... 327
   Introduction ............................................... 327
   10-1 The Fourier Transform as a Decomposition .............. 328
   10-2 The Fourier Transform from the Fourier Series ......... 329
   10-3 Some Properties of the Fourier Transform .............. 331
        Exercises ............................................. 334
   10-4 Solving Partial Differential Equations Using the
        Fourier Transform ..................................... 335
        Exercises ............................................. 341
   10-5 The Spectrum of the Negative Laplacian in One
        Dimension ............................................. 343
   10-6 The Fourier Transform in Three Dimensions ............. 346
        Exercise .............................................. 350
11 The Laplace Transform ...................................... 351
   Introduction ............................................... 351
   Exercises .................................................. 352
   11-1 Properties of the Laplace Transform ................... 352
        Exercises ............................................. 356
   11-2 SolvThg Differential Equations Using the Laplace
        Transform ............................................. 356
        Exercises ............................................. 360
   11-3 Solving the Heat Equation Using the Laplace Transform . 361
        Exercises ............................................. 366
   11-4 The Wave Equation and the Laplace Transform ........... 368
        Exercises ............................................. 373
12 Solving PDEs with Green's Functions ........................ 375
   12-1 Solving the Heat Equation Using Green's Function ...... 375
        Green's Function for the Nonhomogeneous Heat
        Equation .............................................. 377
        Exercises ............................................. 379
   12-2 The Method of Images .................................. 379
        Method of Images for a Semi-infinite Interval ......... 379
        Method of Images for a Bounded Interval ............... 383
        Exercises ............................................. 389
   12-3 Green's Function for the Wave Equation ................ 390
        Exercises ............................................. 397
   12-4 Green's Function and Poisson's Equation ............... 398
        Exercises ............................................. 401

Appendix: Computing the Laplacian with the Chain Rule ......... 403
References .................................................... 413
Index ......................................................... 415


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:25:10 2019. Размер: 16,992 bytes.
Посещение N 1311 c 20.08.2013