Slingerland S. Mathematical modeling of Earth's dynamical systems: a primer (Princeton; Oxford, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаSlingerland S. Mathematical modeling of Earth's dynamical systems: a primer / R.Slingerland, L.Kump. - Princeton; Oxford: Princeton University Press, 2011. - xii, 231 p.: ill., maps. - Ref.: p.211-215. - Ind.: p.216-231. - ISBN 978-0-691-14514-3
 

Оглавление / Contents
 
Preface ....................................................... xi
1  Modeling and Mathematical Concepts .......................... 1
   Pros and Cons of Dynamical Models ........................... 2
   An Important Modeling Assumption ............................ 4
   Some Examples ............................................... 4
      Example I: Simulation of Chicxulub Impact and Its 
         Consequences .......................................... 5
      Example II: Storm Surge of Hurricane Ivan in Escambia 
         Bay ................................................... 7
   Steps in Model Building ..................................... 8
      Basic Definitions and Concepts .......................... 11
      Nondimensionalization ................................... 13
      A Brief Mathematical Review ............................. 14
   Summary .................................................... 22
 
2  Basics of Numerical Solutions by Finite Difference ......... 23
      First Some Matrix Algebra ............................... 23
      Solution of Linear Systems of Algebraic Equations ....... 25
   General Finite Difference Approach ......................... 26
      Discretization .......................................... 27
      Obtaining Difference Operators by Taylor Series ......... 28
      Explicit Schemes ........................................ 29
      Implicit Schemes ........................................ 30
   How Good Is My Finite Difference Scheme? ................... 33
   Stability Is Not Accuracy .................................. 35
   Summary .................................................... 37
   Modeling Exercises ......................................... 38

3  Box Modeling: Unsteady, Uniform Conservation of Mass ....... 39
   Translations ............................................... 40
      Example I: Radiocarbon Content of the Biosphere as 
         a One-Box Model ...................................... 40
      Example II: The Carbon Cycle as a Multibox Model ........ 48
      Example III: One-Dimensional Energy Balance Climate
         Model 53 Finite Difference Solutions of Box Models ... 57
      The Forward Euler Method ................................ 57
      Predictor-Corrector Methods ............................. 59
      Stiff Systems ........................................... 60
      Example IV: Rothman Ocean ............................... 61
      Backward Euler Method ................................... 65
      Model Enhancements ...................................... 69
   Summary .................................................... 71
   Modeling Exercises ......................................... 71

4  One-Dimensional Diffusion Problems ......................... 74
   Translations ............................................... 75
      Example I: Dissolved Species in a Homogeneous Aquifer ... 75
      Example II: Evolution of a Sandy Coastline .............. 80
      Example III: Diffusion of Momentum ...................... 83
   Finite Difference Solutions to 1-D Diffusion Problems ...... 86
   Summary .................................................... 86
   Modeling Exercises ......................................... 87

5  Multidimensional Diffusion Problems ........................ 89
   Translations ............................................... 90
      Example I: Landscape Evolution as a 2-D Diffusion
         Problem .............................................. 90
      Example II: Pollutant Transport in a Confined Aquifer ... 96
      Example III: Thermal Considerations in Radioactive 
         Waste Disposal ....................................... 99
   Finite Difference Solutions to Parabolic PDEs and
      Elliptic Boundary Value Problems ....................... 101
      An Explicit Scheme ..................................... 102
      Implicit Schemes ....................................... 103
      Case of Variable Coefficients .......................... 107
   Summary ................................................... 108
   Modeling Exercises ........................................ 109

6  Advection-Dominated Problems .............................. 111
   Translations .............................................. 112
      Example I: A Dissolved Species in a River .............. 112
      Example II: Lahars Flowing along Simple Channels ....... 116
   Finite Difference Solution Schemes to the Linear 
   Advection Equation ........................................ 122
   Summary ................................................... 126
   Modeling Exercises ........................................ 128

7  Advection and Diffusion (Transport) Problems .............. 130
   Translations .............................................. 131
      Example I: A Generic 1-D Case .......................... 131
      Example II: Transport of Suspended Sediment in 
         a Stream ............................................ 134
      Example III: Sedimentary Diagenesis: Influence of
         Burrows ............................................. 138
   Finite Difference Solutions to the Transport Equation ..... 143
      QUICK Scheme ........................................... 144
      QUICKEST Scheme ........................................ 146
   Summary ................................................... 147
   Modeling Exercises ........................................ 147

8  Transport Problems with a Twist: The Transport of 
   Momentum .................................................. 151
   Translations .............................................. 152
      Example I: One-Dimensional Transport of Momentum in 
         a Newtonian Fluid (Burgers' Equation) ............... 152
   An Analytic Solution to Burgers' Equation ................. 157
   Finite Difference Scheme for Burgers' Equation ............ 158
      Solution Scheme Accuracy ............................... 160
   Diffusive Momentum Transport in Turbulent Flows ........... 163
   Adding Sources and Sinks of Momentum: The General Law of
      Motion ................................................. 165
   Summary ................................................... 166
   Modeling Exercises ........................................ 167

9  Systems of One-Dimensional Nonlinear Partial
   Differential Equations .................................... 169
   Translations .............................................. 169
      Example I: Gradually Varied Flow in an Open Channel .... 169
   Finite Difference Solution Schemes ........................ for
      Equation Sets .......................................... 175
      Explicit FTCS Scheme on a Staggered Mesh ............... 175
      Four-Point Implicit Scheme ............................. 177
      The Dam-Break Problem: An Example ...................... 180
   Summary ................................................... 183
   Modeling Exercises ........................................ 185
10 Two-Dimensional Nonlinear Hyperbolic Systems .............. 187
   Translations .............................................. 188
      Example I: The Circulation of Lakes, Estuaries, and
         the Coastal Ocean ................................... 188
   An Explicit Solution Scheme for 2-D Vertically
      Integrated Geophysical Flows ........................... 197
      Lake Ontario Wind-Driven Circulation: An Example ....... 202
   Summary ................................................... 203
   Modeling Exercises ........................................ 206
Closing Remarks .............................................. 209
References ................................................... 211
Index ........................................................ 217


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:56 2019. Размер: 11,639 bytes.
Посещение N 1456 c 30.07.2013