Gandolfo G. Economic dynamics. - 4th ed., study ed. (Berlin; Heidelberg, 2009 (2010)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGandolfo G. Economic dynamics. - 4th ed., study ed. - Berlin; Heidelberg: Springer, 2009 (2010). - xxv, 829 S.: graph. - Bibliogr.: p.701-730. - Ind.: p.731-749. - ISBN 978-3-642-13503-3
 

Оглавление / Contents
 
PREFACE ....................................................... VII
1  Introduction ................................................. 1
   1.1  Definition .............................................. 1
   1.2  Functional equations .................................... 2
   1.3  Economic dynamics: past and future ...................... 3
   1.4  References .............................................. 5

I  LINEAR DIFFERENCE EQUATIONS .................................. 7

2  Difference Equations: General Principles ..................... 9
   2.1  Definitions ............................................. 9
   2.2  Linear difference equations with constant
        coefficients ........................................... 11
        2.2.1  The homogeneous equation ........................ 12
        2.2.2  The non-homogeneous equation .................... 14
   2.3  Determination of the arbitrary constants ............... 15
   2.4  References ............................................. 16
3  First-order Difference Equations ............................ 19
   3.1  Solution of the homogeneous equation ................... 19
   3.2  Particular solution of the non-homogeneous equation .... 23
        3.2.1  g(t) is a constant .............................. 23
        3.2.2  g(t) is an exponential function ................. 24
        3.2.3  g(t) is a polynomial function of degree m ....... 25
        3.2.4  g(t) is a trigonometric function of the sine-
               cosine type ..................................... 25
        3.2.5  g(t) is a combination of the previous
               functions ....................................... 26
        3.2.6  The case when g(t) is a generic function of
               time. Backward and forward solutions ............ 26
   3.3  General solution of the non-homogeneous equation ....... 29
   3.4  A digression on distributed lags and partial
        adjustment equations ................................... 30
   3.5  Exercises .............................................. 33
        3.5.1  Example ......................................... 33
        3.5.2  Other exercises ................................. 34
   3.6  References ............................................. 35
4  First-order Difference Equations in Economic Models ......... 37
   4.1  The cobweb theorem ..................................... 37
        4.1.1  The cobweb model and expectations ............... 40
               4.1.1.1  The normal price ....................... 41
               4.1.1.2  Adaptive expectations .................. 42
   4.2  The dynamics of multipliers ............................ 45
        4.2.1  The basic case .................................. 45
        4.2.2  Other multipliers ............................... 47
               4.2.2.1  A foreign trade multiplier ............. 48
               4.2.2.2  Taxation ............................... 49
   4.3  Exercises .............................................. 50
   4.4  References ............................................. 53
5  Second-order Difference Equations ........................... 55
   5.1  Solution of the homogeneous equation ................... 55
        5.1.1  Positive discriminant (Δ > 0) ................... 56
        5.1.2  Null discriminant (Δ = 0) ....................... 57
        5.1.3  Negative Discriminant (Δ < 0) ................... 58
        5.1.4  Stability conditions ............................ 60
   5.2  Solution of the non-homogeneous equation ............... 62
        5.2.1  The operational method .......................... 63
   5.3  Determination of the arbitrary constants ............... 65
   5.4  Exercises .............................................. 67
        5.4.1  Example ......................................... 67
        5.4.2  Other exercises ................................. 70
   5.5  References ............................................. 71
6  Second-order Difference Equations in Economic Models ........ 73
   6.1  Multiplier-accelerator interaction: the prototype
        model (Hansen-Samuelson) ............................... 73
        6.1.1  Graphical location of the roots ................. 75
   6.2  Market adjustments and rational expectations ........... 77
   6.3  Hicks' trade cycle model ............................... 78
        6.3.1  The workings of the model ....................... 83
   6.4  Exercises .............................................. 88
   6.5  References ............................................. 90
7  Higher-order Difference Equations ........................... 93
   7.1  Solution of the homogeneous equation ................... 93
   7.2  Particular solution of the non-homogeneous equation .... 94
        7.2.1  The operational method .......................... 95
   7.3  Determination of the arbitrary constants ............... 97
   7.4  Stability conditions ................................... 97
        7.4.1  Necessary and sufficient stability conditions
               (Samuelson's form) .............................. 98
        7.4.2  Necessary and sufficient stability conditions
               (Schur-Cohn form) ............................... 99
   7.5  Exercises ............................................. 102
        7.5.1  Example ........................................ 102
        7.5.2  Other exercises ................................ 103
   7.6  References ............................................ 103
8  Higher-order Difference Equations in Economic Models ....... 105
   8.1  Inventory cycles (Metzler) ............................ 105
   8.2  Distributed lags and interaction between the
        multiplier and the accelerator (Hicks) ................ 108
   8.3  Exercises ............................................. 110
   8.4  References ............................................ 112
9  Simultaneous Systems of Difference Equations ............... 113
   9.1  First-order 2 × 2 systems in normal form .............. 113
        9.1.1  General solution of the homogeneous system:
               first method ................................... 113
        9.1.2  General solution of the homogeneous system:
               second (or direct) method ...................... 116
               9.1.2.1  Unequal real roots .................... 116
               9.1.2.2  Equal real roots ...................... 118
               9.1.2.3  Complex roots ......................... 119
        9.1.3  Particular solution.  Determination of the
               arbitrary constants ............................ 120
   9.2  First order nxn systems in normal form ................ 121
        9.2.1  Direct matrix solution. The Jordan canonical
               form ........................................... 124
        9.2.2  Stability conditions ........................... 127
               9.2.2.1  A digression on not-wholly-unstable
                        systems ............................... 130
               9.2.2.2  Proof of the stability conditions ..... 132
        9.2.3  Particular solution ............................ 134
               9.2.3.1   The operational method ............... 134
        9.2.4  Determination of the arbitrary constants ....... 137
   9.3  General systems ....................................... 138
        9.3.1  First-order systems not in normal form ......... 138
        9.3.2  Higher-order systems ........................... 140
               9.3.2.1  An example ............................ 140
               9.3.2.2  The general case ...................... 141
               9.3.2.3  Transformation of a higher-order
                        system into a first-order system in
                        normal form ........................... 142
               9.3.2.4  Stability conditions for higher-
                        order systems ......................... 144
   9.4  Exercises ............................................. 145
        9.4.1  Example ........................................ 145
        9.4.2  Other exercises ................................ 145
   9.5  References ............................................ 146
10 Simultaneous Difference Systems in Economic Models ......... 149
   10.1 Cournot oligopoly ..................................... 149
   10.2 Multiplier effects in an open economy ................. 152
   10.3 Oligopoly and international trade ..................... 155
        10.3.1 The Equilibrium Solution ....................... 156
        10.3.2 Stability ...................................... 158
   10.4 Exercises ............................................. 159
   10.5 References ............................................ 160

II LINEAR DIFFERENTIAL EQUATIONS .............................. 161

11 Differential Equations: General Principles ................. 163
   11.1 Definitions ........................................... 163
   11.2 Linear differential equations with constant
        coefficients .......................................... 164
        11.2.1 The homogeneous equation ....................... 165
        11.2.2 The non-homogeneous equation ................... 166
   11.3 Determination of the arbitrary constants .............. 168
   11.4 References ............................................ 170
12 First-order Differential Equations ......................... 171
   12.1 Solution of the homogeneous equation .................. 171
   12.2 Particular solution of the non-homegeneous equation ... 174
        12.2.1 g(t) is a constant ............................. 174
        12.2.2 g(t) is an exponential function ................ 175
        12.2.3 g(t) is a polynomial function of degree m ...... 175
        12.2.4 g(t) is a trigonometric function of the sine-
               cosine type .................................... 176
        12.2.5 g(t) is a combination of the previous
               functions ...................................... 176
        12.2.6 g(t) is a generic function of time. The
               method of variation of parameters .............. 177
   12.3 General solution of the non-homogeneous equation ...... 178
   12.4 Continuously distributed lags and partial adjustment
        equations ............................................. 179
   12.5 Exercises ............................................. 181
        12.5.1 Example ........................................ 181
        12.5.2 Other exercises ................................ 183
   12.6 References ............................................ 183
13 First-order Differential Equations in Economic Models ...... 185
   13.1 Stability of supply and demand equilibrium ............ 185
   13.2 The neoclassical growth model ......................... 191
        13.2.1 Existence of a growth equilibrium .............. 192
        13.2.2 Stability of growth equilibrium ................ 194
        13.2.3 Refinements .................................... 197
               13.2.3.1 Depreciation and technical progress ... 197
               13.2.3.2 Golden rule ........................... 199
        13.2.4 Further developments ........................... 200
               13.2.4.1 Adjustment time or, how long is the
                        long run? ............................. 200
               13.2.4.2 β-convergence, σ-convergence,
                        and all that .......................... 203
               13.2.4.3 Endogenous growth ..................... 205
   13.3 Exercises ............................................. 205
   13.4 References ............................................ 208
14 Second-order Differential Equations ........................ 209
   14.1 Solution of the homogeneous equation .................. 209
        14.1.1 Positive discriminant (Δ > 0) .................. 210
        14.1.2 Null discriminant (Δ = 0) ...................... 211
        14.1.3 Negative discriminant (Δ < 0) .................. 212
        14.1.4 Stability conditions ........................... 214
   14.2 Particular solution of the non-homogeneous equation ... 215
        14.2.1 Variation of parameters ........................ 216
   14.3 General solution of the non-homogeneous equation ...... 218
   14.4 Determination of the arbitrary constants .............. 219
   14.5 Exercises ............................................. 219
        14.5.1 Examples ....................................... 219
        14.5.2 Other exercises ................................ 221
   14.6 References ............................................ 221
15 Second-order Differential Equations in Economic Models ..... 223
   15.1 The second-order accelerator .......................... 223
   15.2 Exercises ............................................. 226
   15.3 References ............................................ 228
16 Higher-order Differential Equations ........................ 229
   16.1 Solution of the homogeneous equation .................. 229
   16.2 Solution of the non-homogeneous equation .............. 231
        16.2.1 Variation of parameters ........................ 231
   16.3 Determination of the arbitrary constants .............. 234
   16.4 Stability conditions .................................. 235
        16.4.1 Necessary and sufficient stability conditions
               (Routh-Hurwitz) ................................ 239
        16.4.2 Necessary and sufficient stability conditions
               (Liénard-Chipart) .............................. 240
   16.5 Exercises ............................................. 241
        16.5.1 Example ........................................ 241
        16.5.2 Other exercises ................................ 242
   16.6 References ............................................ 242
17 Higher-order Differential Equations in Economic Models ..... 243
   17.1 Feedback control and stabilisation policies ........... 243
        17.1.1 Introduction ................................... 243
        17.1.2 Three types of stabilisation policy ............ 244
               17.1.2.1 Proportional stabilisation policy ..... 247
               17.1.2.2 Mixed proportional-derivative
                        stabilisation policy .................. 248
               17.1.2.3 Integral stabilisation policy ......... 249
   17.2 Exercises ............................................. 250
   17.3 References ............................................ 251
18 Simultaneous Systems of Differential Equations ............. 253
   18.1 First-order 2 × 2 systems in normal form .............. 253
        18.1.1 General solution of the homogeneous system:
               first method ................................... 254
        18.1.2 General solution of the homogeneous system:
               second (or direct) method ...................... 256
               18.1.2.1 Unequal real roots .................... 257
               18.1.2.2 Equal real roots ...................... 259
               18.1.2.3 Complex roots ......................... 260
        18.1.3 Particular solution. Determination of the
               arbitrary constants ............................ 261
   18.2 First order nxn systems in normal form ................ 261
        18.2.1 Solution of the homogeneous system ............. 263
               18.2.1.1 The matrix exponential and the
                        Jordan canonical form ................. 265
        18.2.2 Stability conditions ........................... 269
               18.2.2.1 D-stability, and stabilisation of
                        matrices .............................. 272
               18.2.2.2 Sensitivity analysis .................. 274
               18.2.2.3 A digression on not-wholly-unstable
                        systems ............................... 277
               18.2.2.4 Proof of the stability conditions ..... 281
        18.2.3 Particular solution ............................ 282
               18.2.3.1 Variation of parameters ............... 283
        18.2.4 Determination of the arbitrary constants ....... 283
   18.3 General systems ....................................... 285
        18.3.1 First-order systems not in normal form ......... 285
        18.3.2 Higher-order systems ........................... 287
               18.3.2.1 An example ............................ 287
               18.3.2.2 The general case ...................... 288
               18.3.2.3 Transformation of a higher-order
                        system into a first-order system in
                        normal form ........................... 289
               18.3.2.4 Stability conditions for higher-order
                        systems ............................... 292
   18.4 Exercises ............................................. 292
        18.4.1 Example ........................................ 292
        18.4.2 Other exercises ................................ 294
   18.5 References ............................................ 295
19 Differential Equation Systems in Economic Models ........... 297
   19.1 Stability of Walrasian general equilibrium of
        exchange .............................................. 297
        19.1.1 Static stability ............................... 299
        19.1.2 Dynamic stability .............................. 301
   19.2 Human capital in a growth model ....................... 304
   19.3 A digression on 'arrow diagrams ....................... 309
   19.4 Balanced growth in a multi-sector economy ............. 311
   19.5 Exercises ............................................. 316
   19.6 References ............................................ 319

III ADVANCED TOPICS ........................................... 323

20 Comparative Statics and the Correspondence Principle ....... 325
   20.1 Introduction .......................................... 325
   20.2 The method of comparative statics ..................... 326
        20.2.1 Purely qualitatively comparative statics ....... 330
        20.2.2 The inverse comparative statics problem ........ 330
   20.3 Comparative statics and optimizing behaviour .......... 331
   20.4 Comparative statics and the dynamic stability of
        equilibrium ........................................... 334
        20.4.1 Criticism and qualifications ................... 336
   20.5 Extrema and dynamic stability ......................... 338
        20.5.1 An application to the theory of the firm ....... 343
   20.6 Elements of comparative dynamics ...................... 344
   20.7 An illustrative application of the correspondence
        principle: the IS-LM model ............................ 345
   20.8 Exercises ............................................. 349
   20.9 References ............................................ 349
21 Stability of Equilibrium: A General Treatment .............. 351
   21.1 Introduction .......................................... 351
   21.2 Basic concepts and definitions ........................ 353
        21.2.1 Stability ...................................... 353
        21.2.2 Further definitions ............................ 357
        21.2.3 Structural stability ........................... 359
   21.3 Qualitative methods: phase diagrams ................... 363
        21.3.1 Single equations ............................... 364
        21.3.2 Two-equation simultaneous systems .............. 368
               21.3.2.1 Introduction: phase plane and phase
                        path .................................. 368
               21.3.2.2 Singular points ....................... 369
               21.3.2.3 Graphical construction of the
                        trajectories .......................... 372
               21.3.2.4 Linear systems ........................ 378
   21.4 Quantitative methods .................................. 382
        21.4.1 Linearisation .................................. 382
   21.5 Elements of the qualitative theory of difference
        equations ............................................. 387
        21.5.1 Single difference equations .................... 388
        21.5.2 Two simultaneous difference equations .......... 393
               21.5.2.1 Linear systems ........................ 394
   21.6 Economic applications ................................. 396
   21.7 Exercises ............................................. 396
   21.8 References ............................................ 398
22 Liapunov's Second Method ................................... 401
   22.1 General concepts ...................................... 401
   22.2 The fundamental theorems .............................. 402
   22.3 Some economic applications ............................ 407
        22.3.1 Global stability of Walrasian general
               equilibrium .................................... 407
        22.3.2 Rules of thumb in business management .......... 414
        22.3.3 Price adjustment and oligopoly under product
               differentiation ................................ 415
   22.4 Exercises ............................................. 419
   22.5 References ............................................ 420
23 Introduction to Nonlinear Dynamics ......................... 423
   23.1 Preliminary remarks ................................... 423
        23.1.1 A digression on existence and uniqueness
               theorems ....................................... 425
   23.2 Some integrable differential equations ................ 426
        23.2.1 First-order and first-degree exact equations ... 426
        23.2.2 Linear equations of the first order with
               variable coefficients .......................... 429
        23.2.3 The Bernoulli equation ......................... 431
        23.2.4 The Riccati equation ........................... 432
   23.3 Limit cycles and relaxation oscillations .............. 434
        23.3.1 Limit cycles: the general theory ............... 434
        23.3.2 Limit cycles: relaxation oscillations .......... 436
        23.3.3 Kaldor's non-linear cyclical model ............. 439
               23.3.3.1 The model ............................. 439
               23.3.3.2 Kaldor via relaxation oscillations .... 443
               23.3.3.3 Kaldor via Poincare's limit cycle ..... 446
   23.4 The Lotka-Volterra equations .......................... 448
        23.4.1 Construction of the integral curves ............ 453
        23.4.2 Conservative and dissipative systems, and
               irreversibility ................................ 455
        23.4.3 Goodwin's growth cycle ......................... 457
               23.4.3.1 The model ............................. 457
               23.4.3.2 The phase diagram of the model ........ 460
        23.4.4 Palomba's model ................................ 463
               23.4.4.1 The model ............................. 463
               23.4.4.2 Conclusion ............................ 466
   23.5 Exercises ............................................. 466
   23.6 References ............................................ 469
24 Bifurcation Theory ......................................... 473
   24.1 Introduction .......................................... 473
   24.2 Bifurcations in continuous time systems ............... 473
        24.2.1 Codimension-one bifurcations ................... 475
        24.2.2 The Hopf bifurcation ........................... 479
        24.2.3 Sensitivity analysis and bifurcations:
               a reminder ..................................... 484
        24.2.4 Kaldor's non-linear cyclical model again ....... 485
        24.2.5 Oscillations in optimal growth models .......... 486
               24.2.5.1 The model ............................. 486
               24.2.5.2 The optimality conditions ............. 488
               24.2.5.3 Emergence of a Hopf bifurcation ....... 489
        24.2.6 Cycles in an IS-LM model with pure money
               financing ...................................... 491
   24.3 Bifurcations in discrete time systems ................. 493
        24.3.1 Codimension-one bifurcations ................... 494
        24.3.2 The Hopf (or Neimark-Sacker) bifurcation in
               discrete time .................................. 496
        24.3.3 Kaldor's cyclical model in discrete time ....... 498
        24.3.4 Liquidity costs in the firm .................... 499
               24.3.4.1 The model ............................. 499
               24.3.4.2 The dynamics .......................... 502
        24.3.5 Expectations and multiplier-accelerator
               interaction .................................... 504
   24.4 Hysteresis and bifurcations ........................... 507
        24.4.1 General ........................................ 507
        24.4.2 Dynamical systems .............................. 509
        24.4.3 Economics ...................................... 510
   24.5 Singularity-induced bifurcations ...................... 511
   24.6 Exercises ............................................. 513
   24.7 References ............................................ 515
25 Complex Dynamics ........................................... 519
   25.1 Introduction .......................................... 519
   25.2 Discrete time systems and chaos ....................... 522
        25.2.1 The logistic map ............................... 522
        25.2.2 Intermittency .................................. 528
        25.2.3 The basic theorems ............................. 529
        25.2.4 Discrete time chaos in economics ............... 531
               25.2.4.1 Chaos in growth theory ................ 531
               25.2.4.2 Exchange rate dynamics and chaos ...... 533
   25.3 Continuous time systems and chaos ..................... 535
        25.3.1 The Lorenz equations, strange attractors, and
               chaos .......................................... 535
        25.3.2 Other routes to continuous time chaos .......... 537
               25.3.2.1 The Rössler attractor ................. 537
               25.3.2.2 The Shil'nikov scenario ............... 538
               25.3.2.3 The forced oscillator ................. 538
               25.3.2.4 The coupled oscillator ................ 539
        25.3.3 International trade as the source of chaos ..... 542
        25.3.4 A chaotic growth cycle ......................... 544
   25.4 Significance and detection of chaos: Stochastic
        dynamics or chaos? .................................... 545
   25.5 Control of chaos ...................................... 549
   25.6 Other approaches ...................................... 552
        25.6.1 Introduction ................................... 552
        25.6.2 Fast and slow, and synergetics ................. 552
        25.6.3 Catastrophe theory ............................. 556
   25.7 Exercises ............................................. 558
   25.8 References ............................................ 560
26 Mixed Differential-Difference Equations .................... 567
   26.1 General concepts ...................................... 567
   26.2 Continuous vs discrete time in economic models ........ 568
   26.3 Linear mixed equations ................................ 573
   26.4 The method of solution ................................ 574
   26.5 Stability conditions .................................. 579
   26.6 Approximate methods ................................... 580
   26.7 Delay differential equations and chaos ................ 581
   26.8 Some economic applications ............................ 582
        26.8.1 Kalecki's business cycle model ................. 583
               26.8.1.1 The model ............................. 583
               26.8.1.2 The dynamics .......................... 585
        26.8.2 A formalization of the classical price-
               specie-flow mechanism of balance of payments
               adjustment ..................................... 589
               26.8.2.1 The model ............................. 589
               26.8.2.2 Stability ............................. 591
   26.9 Exercises ............................................. 593
   26.10 References ........................................... 594
27 Dynamic Optimization ....................................... 597
   27.1 Introduction .......................................... 597
   27.2 Calculus of variations ................................ 599
        27.2.1 Particular cases ............................... 601
        27.2.2 Generalizations ................................ 603
   27.3 The maximum principle ................................. 604
        27.3.1 Statement ...................................... 604
        27.3.2 Proof .......................................... 606
        27.3.3 Transversality conditions ...................... 610
               27.3.3.1 The case with infinite terminal
                        time .................................. 611
        27.3.4 Effects of parameter changes on the optimal
               solution: the costate variables ................ 612
        27.3.5 Discounting .................................... 614
        27.3.6 Particular cases ............................... 615
               27.3.6.1 The bang-bang control case ............ 615
               27.3.6.2 Linear-quadratic problems ............. 616
        27.3.7 The maximum principle in discrete time ......... 618
   27.4 Dynamic programming ................................... 619
        27.4.1 Dynamic programming in discrete time: multi-
               stage optimization problems .................... 622
        27.4.2 Dynamic programming and nonlinear programming .. 626
        27.4.3 Infinite terminal time ......................... 627
               27.4.3.1 Solution by conjecture ................ 628
               27.4.3.2 Solution by iteration ................. 632
               27.4.3.3 Solution by the envelope theorem ...... 633
   27.5 Maximum principle vs. dynamic programming ............. 637
   27.6 Exercises ............................................. 639
   27.7 References ............................................ 641
28 Saddle Points and Economic Dynamics ........................ 643
   28.1 Saddle points in optimal control problems ............. 644
   28.2 Optimal economic growth ............................... 644
        28.2.1 Optimal growth: traditional .................... 644
               28.2.1.1 The setting of the problem ............ 644
               28.2.1.2 The optimality conditions in the
                        basic neoclassical model .............. 647
               28.2.1.3 Saddle-point transitional dynamics
                        in the basic neoclassical model ....... 651
               28.2.1.4 Optimal and sub-optimal feedback
                        control ............................... 653
                        28.2.1.4.1 The sub-optimal feedback
                                   control rule ............... 655
        28.2.2 Optimal growth: endogenous ..................... 656
               28.2.2.1 A model of optimal endogenous growth .. 656
               28.2.2.2 The conditions for optimal
                        endogenous growth ..................... 658
               28.2.2.3 Optimal endogenous growth: saddle-
                        point transitional dynamics ........... 660
   28.3 Optimal endogenous growth in an open economy .......... 664
        28.3.1 The Net Borrower Nation ........................ 669
               28.3.1.1 Steady-State Stability and
                        Comparative Dynamics .................. 671
   28.4 Rational expectations and saddle points ............... 674
        28.4.1 Introduction ................................... 674
        28.4.2 Rational expectations, saddle points, and
               overshooting ................................... 677
               28.4.2.1 A discrete-time equivalent ............ 682
        28.4.3 Rational expectations and saddle points: the
               general case ................................... 684
   28.5 Indeterminacy and sunspots ............................ 686
        28.5.1 Indeterminacy and fiscal policy ................ 688
               28.5.1.1 Firms ................................. 688
               28.5.1.2 Households ............................ 689
               28.5.1.3 Government ............................ 689
               28.5.1.4 The optimality conditions ............. 690
               28.5.1.5 The singular point and its nature ..... 693
   28.6 Exercises ............................................. 697
   28.7 References ............................................ 699

Bibliography .................................................. 701
Index ......................................................... 731
Answers to Exercises .......................................... 751


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:40 2019. Размер: 37,433 bytes.
Посещение N 2056 c 30.04.2013