Predictive modeling of dynamic processes: a tribute to Professor Klaus Thoma (Dordrecht; New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPredictive modeling of dynamic processes: a tribute to Professor Klaus Thoma / ed. by S.Hiermaier. - Dordrecht; New York: Springer, 2009. - xx, 460 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.459-460. - ISBN 978-1-4419-0726-4
 

Оглавление / Contents
 
Introduction .................................................... 1
   Stefan Hiermaier

Part I Simulation of Automotive Crash Processes

1  Simulation of Recoverable Foams under Impact Loading ......... 9
   Stefan Kolling, Andre Werner, Tobias Erhart and Paul A.
   Du Bois
   1.1  Introduction ........................................... 10
   1.2  Current Implementation According to Fu Chang ........... 11
        1.2.1  Theoretical Framework ........................... 11
        1.2.2  Validation Tests ................................ 13
        1.2.3  Application: Leg Impact ......................... 17
   1.3  Addition of a Damage Model ............................. 19
        1.3.1  Theoretical Framework ........................... 19
        1.3.2  Examples ........................................ 22
   References .................................................. 24

2  The Numerical Simulation of Foam - An Example of Inter-
   Industrial Synergy .......................................... 27
   Paul A. Du Bois
   2.1  Introduction ........................................... 27
   2.2  Foams - Physical Nature and Numerical Modeling ......... 28
   2.3  Numerical Modeling of Foams in Automotive Crash ........ 30
   2.4  Impacted Foam - The Columbia Accident .................. 35
   2.5  Summary and Conclusion ................................. 41
   References .................................................. 42

3  Influence of Hardening Relations on Forming Limit Curves
   Predicted by the Theory of Marciniak, Kuczyński, and
   Pokora ...................................................... 43
   Heinrich Werner
   3.1  Introduction ........................................... 43
   3.2  Theoretical Model ...................................... 45
        3.2.1  Constitutive Equations .......................... 47
        3.2.2  Derivation of Evolution Equations for the
               Onset of Instability ............................ 48
   3.3  Numerical Solution Method .............................. 51
   3.4  Initial Conditions ..................................... 53
   3.5  Validation ............................................. 55
   3.6  Convergence Properties ................................. 57
   3.7  Influence of Different Hardening Relations on the
        FLCs ................................................... 58
        3.7.1  Effect of Various Quasi-Static Hardening
               Relations on Forming Limit Curves ............... 59
        3.7.2  Effect of Various Strain Rate Formulations on
               the Forming Limit Curves ........................ 61
   3.8  Summary ................................................ 63
   References .................................................. 64

4  The Challenge to Predict Material Failure in
   Crashworthiness Applications: Simulation of Producibility
   to Serviceability ........................................... 67
   André Haufe, Markus Feucht and Frieder Neukamm
   4.1  Introduction ........................................... 68
   4.2  The Process Chain of Sheet Metal Part Manufacturing .... 68
   4.3  Some Ideas for Failure Modelling in Forming and
        Crashworthiness Simulations ............................ 70
        4.3.1  The Barlat Constitutive Model for Forming
               Simulations ..................................... 71
        4.3.2  Constitutive Models for Crashworthiness
               Applications .................................... 72
        4.3.3  A Hybrid Approach to Estimate the Void Volume
               Fraction in Forming Simulations ................. 73
        4.3.4  A Generalized Scalar Damage Model for Forming
               and Crashworthiness Simulations ................. 75
   4.4  Path-Dependent Localization ............................ 77
        4.4.1  Stress and Strain Measures ...................... 77
        4.4.2  Linear Accumulation of the Instability
               Criterion ....................................... 79
        4.4.3  Nonlinear Accumulation of the Instability
               Criterion ....................................... 80
   4.5  Post Critical Behaviour ................................ 81
        4.5.1  Damage-Dependent Yield Stress ................... 82
        4.5.2  Energy Dissipation and Fadeout .................. 83
   4.6  Application of a Demonstrator Part ..................... 84
   4.7  Conclusions ............................................ 85
   References .................................................. 87

5  Cohesive Zone Modeling for Adhesives ........................ 89
   Matthias Nossek and Stephan Marzi
   5.1  Introduction ........................................... 90
   5.2  Characterization Procedure ............................. 90
        5.2.1  Bulk Tensile Tests .............................. 91
        5.2.2  Coupon Tests .................................... 92
        5.2.3  Fracture Mechanical Tests ....................... 93
   5.3  Cohesive Zone Model .................................... 94
   5.4  Validation ............................................. 99
   5.5  Application ........................................... 101
   5.6  Summary ............................................... 104
   References ................................................. 104

6  Modeling the Plasticity of Various Material Classes with
   a Single Quadratic Yield Function .......................... 107
   Markus Wicklein
   6.1  Introduction .......................................... 107
   6.2  A Quadratic Yield Function ............................ 109
   6.3  Parameter Identification for Foams .................... 112
   6.4  Application to Honeycombs ............................. 114
   6.5  Application to Carbon Fiber-Reinforced Plastics ....... 117
   6.6  Outlook ............................................... 118
   References ................................................. 119

7  On the Computation of a Generalised Dynamic J-Integral
   and its Application to the Durability of Steel
   Structures ................................................. 121
   Ingbert Mangerig and Stefan Kolling
   7.1  Introduction .......................................... 121
   7.2  Basic Equations ....................................... 123
   7.3  Theory of Configurational Forces ...................... 124
   7.4  Finite Element Formulation ............................ 126
   7.5  Fatigue, Stress Intensity Factor and Crack Growth
        Rate .................................................. 127
   7.6  Application to Durability Analysis .................... 128
   7.7  Summary ............................................... 130
   References ................................................. 131

Part II Numerical Modeling of Blast and Impact Phenomena

8  The MAX-Analysis: New Computational and Post-Processing
   Procedures for Vehicle Safety Analysis ..................... 135
   David Vinckier
   8.1  Introduction .......................................... 135
   8.2  Prediction Capabilities for Vehicle Mine and IED
        Blast Simulations ..................................... 136
   8.3  The MAX-Analysis: Unification of the Computational
        Results ............................................... 138
   8.4  Summary ............................................... 140

9  10 Years RHT: A Review of Concrete Modelling and
   Hydrocode Applications ..................................... 143
   Werner Riedel
   9.1  Introduction: Dynamic Measurements and Model
        Development ........................................... 143
        9.1.1  The Starting Point of the Developments ......... 143
        9.1.2  Equation of State for a Large-Scale
               Heterogeneous Composite ........................ 146
        9.1.3  Combining Civil Engineering Knowledge and
               Shock Physics .................................. 148
   9.2  Applications in Impact Analysis ....................... 150
        9.2.1  Extended Validation and Sensitivity Analysis ... 150
        9.2.2  Deformable Projectiles and Coupling with
               Explosions ..................................... 154
   9.3  Protecting Critical Infrastructure against Explosion
        Effects ............................................... 155
        9.3.1  Comparison to Engineering Models and
               Empirical Formula .............................. 158
        9.3.2  From Power Plant Security to Future High-
               Rise-Buildings ................................. 159
   9.4  Summary and Outlook ................................... 163
   References ................................................. 163

10 Numerical Simulations of the Penetration of Glass Using
   Two Pressure-Dependent Constitutive Models ................. 167
   Sidney Chocron and Charles E. Anderson Jr.
   10.1 Introduction .......................................... 167
   10.2 Materials ............................................. 168
   10.3 Experimental Techniques for Material
        Characterization ...................................... 168
        10.3.1 'Bomb' Technique ............................... 168
        10.3.2 'Sleeve' Technique ............................. 170
   10.4 Constitutive Model Interpretations .................... 171
        10.4.1 Drucker-Prager Model ........................... 171
        10.4.2 Mohr-Coulomb Model ............................. 173
   10.5 Numerical Simulation of Penetration ................... 175
        10.5.1 Drucker-Prager Model ........................... 176
        10.5.2 Mohr-Coulomb Model ............................. 180
   10.6 Summary and Conclusions ............................... 182
   Appendix ................................................... 184
   References ................................................. 186

11 On the main mechanisms in ballistic perforation of steel
   plates at sub-ordnance impact velocities ................... 189
   Tore Børvik, Sumita Dey, Odd Sture Hopperstad and Magnus
   Langseth
   11.1 Introduction .......................................... 190
   11.2 Experimental Studies .................................. 191
        11.2.1 Experimental Set-Up ............................ 191
        11.2.2 Projectiles and Targets ........................ 192
        11.2.3 Experimental Programs .......................... 193
   11.3 Experimental Results .................................. 194
        11.3.1 Effect of Projectile Impact Velocity ........... 194
        11.3.2 Effect of Target Thickness ..................... 195
        11.3.3 Effect of Projectile Nose-Shape ................ 196
        11.3.4 Effect of Target Strength ...................... 199
        11.3.5 Effect of Target Layering ...................... 201
        11.3.6 Summary of Experimental Data ................... 203
   11.4 Material Modelling, Material Tests and
        Identification of Material Constants .................. 206
        11.4.1 Constitutive Relation and Fracture Criteria .... 206
        11.4.2 Material Data and Model Calibration ............ 209
   11.5 Numerical Studies ..................................... 211
        11.5.1 Numerical Models ............................... 212
        11.5.2 Some Numerical Results ......................... 213
   11.6 Concluding Remarks .................................... 216
   References ................................................. 217

12 Dimensioning of concrete walls against small calibre
   impact including models for deformable penetrators and
   the scattering of experimental results ..................... 221
   Norbert Gebbeken, Tobias Linse, Thomas Hartmann, Martien
   Teich and Achim Pietzsch
   12.1 Introduction .......................................... 221
   12.2 Penetration and perforation of concrete walls with
        non-deformable penetrators ............................ 223
   12.3 Deformable projectiles ................................ 226
        12.3.1 Jacketed projectiles ........................... 226
        12.3.2 Homogenous deformable projectiles .............. 229
   12.4 Scattering of experimental data ....................... 232
   12.5 The new software-tool PenSim .......................... 235
   References ................................................. 236

13 Numerical Analysis of Fluiddynamic Instabilities and
   Pressure Fluctuations in the Near Field of a Detonation .... 239
   Arno Klomfass
   13.1 Introduction .......................................... 239
   13.2 Physical Models ....................................... 243
   13.3 Numerical Methods ..................................... 245
   13.4 Computational Methodology ............................. 247
   13.5 Results ID, 2D and 3D Free Field ...................... 248
   13.6 Results 2D Above-Ground Detonation .................... 250
   13.7 Conclusions ........................................... 251
   References ................................................. 251

14 Numerical Simulation of Muzzle Exit and Separation
   Process for Sabot-Guided Projectiles at M > 1 .............. 261
   Jorn van Keuk and Arno Klomfass
   14.1 Introduction .......................................... 261
   14.2 Technical Specifications / Experimental Setup ......... 262
   14.3 Numerical Solution Method ............................. 263
   14.4 Simulation Results / Comparison with Experiments ...... 264
   14.5 Conclusions / Future Work ............................. 268
   References ................................................. 269

15 Numerical Analysis of the Supercavitating Flow about
   blunt Bodies .............................................. 271
   Arno Klomfass and Manfred Salk
   15.1 Introduction .......................................... 271
   15.2 Physical Models ....................................... 273
        15.2.1 Conservation Equations ......................... 273
        15.2.2 Equation of State .............................. 273
   15.3 Numerical Method ...................................... 275
   15.4 Steady State Row Fields ............................... 276
   15.5 Summary ............................................... 277
   References ................................................. 278

16 Numerical Analysis Method for the RC Structures
   Subjected to Aircraft Impact and HE Detonation ............. 281
   Masahide Katayama and Masaharu Itoh
   16.1 Introduction .......................................... 281
   16.2 Analytical Method ..................................... 282
        16.2.1 Analysis Code .................................. 282
        16.2.2 Material Models ................................ 283
   16.3 Numerical Analyses .................................... 287
        16.3.1 Missile Impact on RC Structure (2D) ............ 287
        16.3.2 HE Detonations On and Near the RC Slab (2D &
               3D) ............................................ 290
        16.3.3 F-4 Phantom Crashing on a RC Wall (3D) ......... 296
        16.3.4 Boeing 747 Jet Impacting on Thick Concrete
               Walls (3D) ..................................... 302
        16.3.5 HE Detonation in Tunnel Structure with Inner
               Steel Liner (3D) ............................... 307
   16.4 Conclusions ........................................... 311
   References ................................................. 311

17 Groundshock Displacements - Experiment and Simulation ...... 315
   Eliahu Racah
   17.1 Introduction .......................................... 316
   17.2 Experiment ............................................ 316
        17.2.1 Experimental Setup ............................. 316
        17.2.2 Experimental results ........................... 317
   17.3 MSC.DYTRAN DYMMAT14 Material Model .................... 319
        17.3.1 Deviatoric Behavior ............................ 319
        17.3.2 Hydrostatic Behavior ........................... 321
   17.4 Soil Data ............................................. 321
        17.4.1 Density ........................................ 322
        17.4.2 Refraction Survey and Elastic Moduli ........... 323
        17.4.3 Pressiometer Tests and Volumetric Crush ........ 324
        17.4.4 Direct Shear Tests and Yield Surface ........... 325
   17.5 Simulation ............................................ 326
        17.5.1 Simulation Setup ............................... 326
        17.5.2 Simulation Results and Discussion .............. 327
   17.6 Conclusion ............................................ 330
   References ................................................. 330

Part III Numerical Simulation of Hypervelocity Impact
         Effects

18 Hypervelocity Impact Induced Shock Waves and Related
   Equations of State ......................................... 333
   Stefan Hiermaier
   18.1 Introduction .......................................... 333
   18.2 Shock Wave Formation and the Necessity of Adequate
        Equations of State .................................... 334
        18.2.1 Wave Dispersion due to Nonlinear Compressive
               Material Characteristics ....................... 334
        18.2.2 Requirements to an EoS with Respect to Shock
               Formation ...................................... 336
   18.3 Equations of State for the Simulations of Shock
        Processes ............................................. 337
        18.3.1 Complete versus Incomplete Equations of
               State .......................................... 337
        18.3.2 Mie-Griineisen Shock EoS ....................... 339
        18.3.3 Equations of State for Porous Materials ........ 340
   References ................................................. 347

19 Artificial Viscosity Methods for Modelling Shock Wave
   Propagation ................................................ 349
   James Campbell and Rade Vignjevic
   19.1 Introduction .......................................... 349
   19.2 The Von Neumann - Richtmyer viscosity ................. 350
        19.2.1 Demonstration .................................. 352
        19.2.2 Wall Heating ................................... 356
   19.3 Test problems for shock viscosity formulations ........ 356
        19.3.1 Sod shock tube ................................. 356
        19.3.2 Noh generic constant velocity shock ............ 358
        19.3.3 Saltzman piston ................................ 359
   19.4 Alternative forms of artificial viscosity ............. 361
        19.4.1 Edge centred viscosity ......................... 362
        19.4.2 Tensor viscosity ............................... 363
   19.5 Summary ............................................... 364
   References ................................................. 364

20 Review of Development of the Smooth Particle
   Hydrodynamics (SPH) Method ................................. 367
   Rade Vignjevic and James Campbell
   20.1 Introduction .......................................... 367
   20.2 Basic Formulation ..................................... 372
   20.3 Conservation Equations ................................ 373
   20.4 Kernel Function ....................................... 377
   20.5 Variable Smoothing Length ............................. 378
   20.6 Neighbour Search ...................................... 379
   20.7 SPH Shortcomings ...................................... 380
        20.7.1  Consistency ................................... 380
        20.7.2 Tensile Instability ............................ 384
        20.7.3 Zero-Energy Modes .............................. 389
   20.8 Summary ............................................... 391
   References ................................................. 392

21 Assessing the Resiliency of Composite Structural Systems
   and Materials Used in Earth-Orbiting Spacecraft to
   Hypervelocity Projectile Impact ............................ 397
   William P. Schonberg
   21.1 Introduction .......................................... 397
   21.2 Historical Overview ................................... 400
   21.3 Composite Material Panels ............................. 401
        21.3.1 HVI Response Characterization .................. 401
        21.3.2 Use in MOD Protection Systems .................. 403
   21.4 Honeycomb Sandwich Panels ............................. 406
        21.4.1 Early Work - The 1960s and 70s ................. 406
        21.4.2 The 1980s and 90s .............................. 407
        21.4.3 Recent Work .................................... 409
   21.5 Conclusions ........................................... 410
   References ................................................. 411

22 Numerical Simulation in Micrometeoroid and Orbital Debris
   Risk Assessment ............................................ 417
   Shannon Ryan
   22.1 Introduction .......................................... 417
   22.2 Ballistic Limit Simulation of a Representative
        Satellite Structure Wall .............................. 423
        22.2.1 Target Definition .............................. 424
        22.2.2 Experimental Validation of the Numerical
               Simulation ..................................... 424
        22.2.3 Simulation Results ............................. 426
   22.3 Simulation of Hypervelocity Impact on
        a Representative Satellite Structure Wall Causing
        Penetration and Fragment Ejection ..................... 428
        22.3.1 Target Definition .............................. 430
        22.3.2 Experimental Validation of the Numerical
               Simulation ..................................... 430
        22.3.3 Simulation Results ............................. 434
   22.4 Numerical Simulation of Impact Induced Disturbances
        in Satellite Structures ............................... 435
        22.4.1 Target Definition .............................. 436
        22.4.2 Experimental Validation of the Numerical
               Simulation ..................................... 436
        22.4.3 Simulation Results ............................. 439
   22.5 Discussion and Summary ................................ 444
   References ................................................. 445

23 Numerical Modeling of Crater Formation by Meteorite
   Impact and Nuclear Explosion ............................... 447
   Charles L. Mader
   23.1 The NOBEL Code ........................................ 447
   23.2 Modeling the Arizona Meteor Crater .................... 449
   23.3 Modeling the SEDAN Crater Created by a Nuclear
        Explosion ............................................. 452
   23.4 Conclusions ........................................... 455
   References ................................................. 457

Index ......................................................... 459


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:32 2019. Размер: 27,335 bytes.
Посещение N 2074 c 12.02.2013