Treves T. Topological vector spaces, distributions and kernels (New York, 1967). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTreves T. Topological vector spaces, distributions and kernels. - New York: Academic Press, 1967. - xvi, 565 p. - (Pure and applied mathematics. A series of monographs and textbooks; 25). - Incl. bibl. ref. and index. - ISBN 0-12-699450-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix

Part I. Topological Vector Spaces. Spaces of Functions .......... 2

1  Filters. Topological Spaces. Continuous Mappings ............. 6
2  Vector Spaces. Linear Mappings .............................. 14
3  Topological Vector Spaces. Definition ....................... 20
4  Hausdorff Topological Vector Spaces. Quotient Topological
   Vector Spaces. Continuous Linear Mappings ................... 31
   Hausdorff Topological Vector Spaces ......................... 31
   Quotient Topological Vector Spaces .......................... 33
   Continuous Linear Mappings .................................. 34
5  Cauchy Filters. Complete Subsets. Completion ................ 37
6  Compact Sets ................................................ 50
7  Locally Convex Spaces. Seminorms ............................ 57
8  Metrizable Topological Vector Spaces ........................ 70
9  Finite Dimensional Hausdorff Topological Vector Spaces.
   Linear Subspaces with Finite Codimension. Hyperplanes ....... 78
10 Frechet Spaces. Examples .................................... 85
   Example I. The Space of fig.4k Functions in a Open Subset Ω
   of Rn ....................................................... 85
   Example II. The Space of Holomorphic Functions in an
   Open Subset Ω of Cn ......................................... 89
   Example III. The Space of Formal Power Series in
   n Indeterminates ............................................ 91
   Example IV. The Space fig.3 of fig.4 Functions in Rn, Rapidly
   Decreasing at Infinity ...................................... 92
11 Normable Spaces. Banach Spaces. Examples .................... 95
12 Hilbert Spaces ............................................. 112
13 Spaces LF. Examples ........................................ 126
14 Bounded Sets ............................................... 136
15 Approximation Procedures in Spaces of Functions ............ 150
16 Partitions of Unity ........................................ 161
17 The Open Mapping Theorem ................................... 166

Part II. Duality. Spaces of Distributions ..................... 175

18 The Hahn-Banach Theorem .................................... 181
   (1) Problems of Approximation .............................. 186
   (2) Problems of Existence .................................. 187
   (3) Problems of Separation ................................. 189
19 Topologies on the Dual ..................................... 195
20 Examples of Duals among Lp Spaces .......................... 202
   Example I. The Duals of the Spaces of Sequences lp
   (1 ≤ p < +) ............................................... 206
   Example II. The Duals of the Spaces Lp(Ω) (1 ≤ p < +) ..... 210
21 Radon Measures. Distributions .............................. 216
   Radon Measures in an Open Subset of Rn ..................... 216
   Distributions in an Open Subset of Rn ...................... 222
22 More Duals: Polynomials and Formal Power Series.
   Analytic Functionals ....................................... 227
   Polynomials and Formal Power Series ........................ 227
   Analytic Functionals in an Open Subset Ω of Cn ............. 231
23 Transpose of a Continuous Linear Map ....................... 240
   Example I. Injections of Duals ............................. 243
   Example II. Restrictions and Extensions .................... 245
   Example III. Differential Operators ........................ 247
24 Support and Structure of a Distribution .................... 253
   Distributions with Support at the Origin ................... 264
25 Example of Transpose: Fourier Transformation of Tempered
   Distributions .............................................. 267
26 Convolution of Functions ................................... 278
27 Example of Transpose: Convolution of Distributions ......... 284
28 Approximation of Distributions by Cutting and
   Regularizing ............................................... 298
29 Fourier Transforms of Distributions with Compact Support.
   The Paley-Wiener Theorem ................................... 305
30 Fourier Transforms of Convolutions and Multiplications ..... 314
31 The Sobolev Spaces ......................................... 322
32 Equicontinuous Sets of Linear Mappings ..................... 335
33 Barreled Spaces. The Banach-Steinhaus Theorem .............. 346
34 Applications of the Banach-Steinhaus Theorem ............... 351
   34.1 Application to Hilbert Spaces ......................... 351
   34.2 Application to Separately Continuous Functions on
        Products .............................................. 352
   34.3 Complete Subsets of Lfig.6(E; F) .......................... 354
   34.4 Duals of Montel Spaces ................................ 356
35 Further Study of the Weak Topology ......................... 360
36 Topologies Compatible with a Duality. The Theorem of
   Mackey. Reflexivity ........................................ 368
   The Normed Space EB ........................................ 370
   Examples of Semireflexive and Reflexive Spaces ............. 374
37 Surjections of Frechet Spaces .............................. 378
   Proof of Theorem 37.1 ...................................... 379
   Proof of Theorem 37.2 ...................................... 383
38 Surjections of Frechet Spaces (continued). Applications .... 387
   Proof of Theorem 37.3 ...................................... 387
   An Application of Theorem 37.2: A Theorem of E. Borel ...... 390
   An Application of Theorem 37.3: A Theorem of Existence of
   fig.4 Solutions of a Linear Partial Differential Equation ..... 391

Part III. Tensor Products. Kernels ............................ 395

39 Tensor Product of Vector Spaces ............................ 403
40 Differentiable Functions with Values in Topological Vector
   Spaces. Tensor Product of Distributions .................... 411
41 Bilinear Mappings. Hypocontinuity .......................... 420
   Proof of Theorem 41.1 ...................................... 421
42 Spaces of Bilinear Forms. Relation with Spaces of Linear
   Mappings and with Tensor Products .......................... 427
43 The Two Main Topologies on Tensor Products. Completion of
   Topological Tensor Products ................................ 434
44 Examples of Completion of Topological Tensor Products:
   Products ε ................................................. 446
   Example 44.1. The Space fig.4m(X; E) of fig.4m Functions Valued in 
                 a Locally Convex Hausdorff Space E 
                 (0 ≤ m ≤ +) ................................. 446
   Example 44.2. Summable Sequences in a Locally Convex
                 Hausdorff Space .............................. 451
45 Examples of Completion of Topological Tensor Products:
   Completed π-Product of Two Fréchet Spaces .................. 459
46 Examples of Completion of Topological Tensor Products:
   Completed π-Products with a Space L1 ....................... 467
   46.1 The Spaces Lα(E) ...................................... 467
   46.2 The Theorem of Dunford-Pettis ......................... 469
   46.3 Application to L1 fig.8π E ................................ 473
47 Nuclear Mappings ........................................... 477
   Example. Nuclear Mappings of a Banach Space into a Space 
            L1 ................................................ 486
48 Nuclear Operators in Hilbert Spaces ........................ 488
49 The Dual of Efig.9fig.10F, Integral Mappings ........................ 500
50 Nuclear Spaces ............................................. 509
   Proof of Proposition 50.1 .................................. 516
51 Examples of Nuclear Spaces. The Kernels Theorem ............ 526
52 Applications ............................................... 535
   Appendix: The Borel Graph Theorem .......................... 549
   Bibliography for Appendix .................................. 557
   General Bibliography ....................................... 558

Index of Notation ............................................. 559
Subject Index ................................................. 561


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:30 2019. Размер: 12,868 bytes.
Посещение N 1663 c 05.02.2013