Mentzen M.K. Group extension of dynamical systems in ergodic theory and topological dynamics (Torun, 2005). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMentzen M.K. Group extension of dynamical systems in ergodic theory and topological dynamics / Juliusz Schauder Center for Nonlinear Studies; Nicolaus Copernicus University. - Toruń, 2005. - 193 p. - (Lecture notes in nonlinear analysis; vol.6). - Bibliogr.: p.183-187. - Ind.: p.189-193. - ISBN 83-231-1625-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 7

Chapter 1  Preliminaries ....................................... 17
1.1  Measure-theoretic dynamical systems ....................... 17
1.2  Ergodic dynamical systems with discrete spectrum .......... 20
1.3  Measure-theoretical joinings .............................. 22
1.4  Group extensions of measure-theoretic dynamical systems ... 24
1.5  Rokhlin cocycle extensions ................................ 28
1.6  Gauss dynamical systems ................................... 29
1.7  Topological dynamics - definitions and notations .......... 31
1.8  Universal flows ........................................... 35

Chapter 2  Semisimple Automorphisms ............................ 43
2.1  Group and isometric extensions, joinings .................. 43
2.2  Furstenberg decomposition ................................. 46
2.3  Semisimplicity ............................................ 48
2.4  Natural factors and the structure of factors for
     semisimple automorphisms .................................. 49
2.5  Joinings of ergodic group extensions of semisimple
     automorphisms ............................................. 51
2.6  Applications of natural families .......................... 57
2.7  Final remarks ............................................. 60

Chapter 3  Semisimple Group Extensions of Rotations ............ 61
3.1  General backgrounds ....................................... 61
3.2  Self-joinings of Rokhlin cocycles extensions for regular
     cocycles .................................................. 62
3.3  Cocycles over irrational rotations ........................ 69
3.1  Semisimple authomorphisms ................................. 79
3.5  Final remarks ............................................. 81

Chapter 4  Natural Families of Factors in Topological 
           Dynamics ............................................ 83
4.1  General backgrounds ....................................... 83
4.2  A natural family of factors defined by minimal joinings ... 85
4.3  A natural family of factors defined by B-joinings ......... 90
4.4  Group extensions of minimal rotations ..................... 94

Chapter 5  Real Cocycle Extensions of Minimal Rotations ....... 101
5.1  Existence of almost periodic oints ....................... 101
5.2  Essential values of a cocycle ............................ 102
5.3  Characterization of essential values for minimal
     rotations ................................................ 107
5.4  Classification of continuous real cocycles over minimal
     rotations ................................................ 108
5.5  Zero-time cocycle for Morse shifts ....................... 110
5.6  An application - a disjointness theorem .................. 113

Chapter 6  Essential Values of Topological Cocycles over
           Minimal Rotations .................................. 121
6.1  Essential values of a cocycle ............................ 121
6.2  The groups of essential values for extensions of
     minimal rotations ........................................ 127
6.3  Atkinson's theorem and regularity of cylinder flows ...... 131
6.4  A more general case ...................................... 137

Chapter 7  Cylinder Cocycle Extensions and Rotations .......... 141
7.1  The problem of minimality for cylinder extensions of 
     minimal rotations on a circle ............................ 142
7.2  The problem of minimality for cylinder extensions of 
     adding machines .......................................... 146
7.3  Existence of point transitive cocycles over compact
     monothetic groups ........................................ 148

Chapter 8  Some Applications of Groups of Essential Values
           of Cocycles in Topological Dynamics ................ 153
8.1  Preliminaries ............................................ 153
8.2  Counterexamples in topological dynamics .................. 155
8.3  Isomorphisms of Rokhlin cocycle extensions of point
     transitive flows ......................................... 158
8.4  A remark on some recent results .......................... 166

Appendix A. Lebesgue Spaces and their Properties .............. 167
А.1  Point and set maps of measure spaces ..................... 167
A.2  Probability Lebesgue spaces .............................. 168
A.3  Spectral theory of unitary operators ..................... 169

Appendix B. Topological topics ................................ 177
B.l  Uniform structures ....................................... 177
B.2  The Čech-Stone compactification of a discrete
     topological group ........................................ 178
Bibliography .................................................. 183

Index ......................................................... 189


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:30 2019. Размер: 8,681 bytes.
Посещение N 1396 c 05.02.2013