Fichtner A. Full seismic waveform modelling and inversion (Berlin; Heidelberg, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFichtner A. Full seismic waveform modelling and inversion / with contributions by F.Bleibinhaus, Y.Capdeville. - Berlin; Heidelberg: Springer, 2011. - xx, 343 p.: ill. - (Advances in geophysical and environmental mechanics and mathematics). - Ref.: p.321-337. - Ind.: p.339-343. - ISBN 978-3-642-15806-3; ISSN 1866-8348
 

Оглавление / Contents
 
1  Preliminaries ................................................ 1
   1.1  A Brief Historical Overview ............................. 1
   1.2  The Full Waveform Tomographic Inverse Problem -
        Probabilistic vs. Deterministic ......................... 3
   1.3  Terminology: Full Language Confusion .................... 4

Part I  Numerical Solution of the Elastic Wave Equation

2  Introduction ................................................. 9
   2.1  Notational Conventions .................................. 9
   2.2  The Elastic Wave Equation .............................. 11
        2.2.1  Governing Equations ............................. 11
        2.2.2  Formulations of the Elastic Wave Equation ....... 13
   2.3  The Acoustic Wave Equation ............................. 14
   2.4  Discretisation in Space ................................ 15
   2.5  Discretisation in Time or Frequency .................... 16
        2.5.1  Time-Domain Modelling ........................... 16
        2.5.2  Frequency-Domain Modelling ...................... 18
   2.6  Summary of Numerical Methods ........................... 19
3  Finite-Difference Methods ................................... 23
   3.1  Basic Concepts in One Dimension ........................ 24
        3.1.1  Finite-Difference Approximations ................ 24
        3.1.2  Discretisation of the ID Wave Equation .......... 30
        3.1.3  von Neumann Analysis: Stability and Numerical
               Dispersion ...................................... 34
   3.2  Extension to the 3D Cartesian Case ..................... 38
        3.2.1  The Staggered Grid .............................. 39
        3.2.2  Anisotropy and Interpolation .................... 43
        3.2.3  Implementation of the Free Surface .............. 45
   3.3  The 3D Spherical Case .................................. 50
   3.4  Point Source Implementation ............................ 53
   3.5  Accuracy and Efficiency ................................ 55
4  Spectral-Element Methods .................................... 59
   4.1  Basic Concepts in One Dimension ........................ 59
        4.1.1  Weak Solution of the Wave Equation .............. 60
        4.1.2  Spatial Discretisation and the Galerkin
               Method .......................................... 60
   4.2  Extension to the 3D Case ............................... 66
        4.2.1  Mesh Generation ................................. 66
        4.2.2  Weak Solution of the Elastic Wave Equation ...... 70
        4.2.3  Discretisation of the Equations of Motion ....... 71
        4.2.4  Point Source Implementation ..................... 76
   4.3  Variants of the Spectral-Element Method ................ 79
   4.4  Accuracy and Efficiency ................................ 81
5  Visco-elastic Dissipation ................................... 83
   5.1  Memory Variables ....................................... 83
   5.2  Q Models ............................................... 85
6  Absorbing Boundaries ........................................ 89
   6.1  Absorbing Boundary Conditions .......................... 89
        6.1.1  Paraxial Approximations of the Acoustic Wave
               Equation ........................................ 90
        6.1.2  Paraxial Approximations as Boundary Conditions
               for Acoustic Waves .............................. 92
        6.1.3  High-Order Absorbing Boundary Conditions for
               Acoustic Waves .................................. 94
        6.1.4  Generalisation to the Elastic Case .............. 96
        6.1.5  Discussion ...................................... 97
   6.2  Gaussian Taper Method .................................. 98
   6.3  Perfectly Matched Layers (PML) ......................... 99
        6.3.1  General Development ............................. 99
        6.3.2  Standard PML ................................... 103
        6.3.3  Convolutional PML .............................. 104
        6.3.4  Other Variants of the PML Method ............... 108

Part II  Iterative Solution of the Full Waveform Inversion
         Problem

7  Introduction to Iterative Non-linear Minimisation .......... 113
   7.1  Basic Concepts: Minima, Convexity and
        Non-uniqueness ........................................ 114
        7.1.1  Local and Global Minima ........................ 114
        7.1.2  Convexity: Global Minima and (Non)Uniqueness ... 116
   7.2  Optimally Conditions .................................. 121
   7.3  Iterative Methods for Non-linear Minimisation ......... 122
        7.3.1  General Descent Methods ........................ 122
        7.3.2  The Method of Steepest Descent ................. 125
        7.3.3  Newton's Method and Its Variants ............... 126
        7.3.4  The Conjugate-Gradient Method .................. 128
   7.4  Convergence ........................................... 134
        7.4.1  The Multi-Scale Approach ....................... 134
        7.4.2  Regularisation ................................. 137
8  The Time-Domain Continuous Adjoint Method .................. 141
   8.1  Introduction .......................................... 141
   8.2  General Formulation ................................... 143
        8.2.1  Frechet Kernels ................................ 145
        8.2.2  Translation to the Discretised Model Space ..... 145
        8.2.3  Summary of the Adjoint Method .................. 146
   8.3  Derivatives with Respect to the Source ................ 147
   8.4  Second Derivatives .................................... 148
        8.4.1  Motivation: The Role of Second Derivatives in
               Optimisation and Resolution Analysis ........... 149
        8.4.2  Extension of the Adjoint Method to Second
               Derivatives .................................... 152
   8.5  Application to the Elastic Wave Equation .............. 157
        8.5.1  Derivation of the Adjoint Equations ............ 157
        8.5.2  Practical Implementation ....................... 161
9  First and Second Derivatives with Respect to Structural
   and Source Parameters ...................................... 163
   9.1  First Derivatives with Respect to Selected
        Structural Parameters ................................. 163
        9.1.1  Perfectly Elastic and Isotropic Medium ......... 165
        9.1.2  Perfectly Elastic Medium with Radial
               Anisotropy ..................................... 167
        9.1.3  Isotropic Visco-Elastic Medium: Qμ and Qk ...... 170
   9.2  First Derivatives with Respect to Selected Source
        Parameters ............................................ 172
        9.2.1  Distributed Sources and the Relation to Time-
               Reversal Imaging ............................... 172
        9.2.2  Moment Tensor Point Source ..................... 172
   9.3  Second Derivatives with Respect to Selected
        Structural Parameters ................................. 173
        9.3.1  Physical Interpretation and Structure of the
               Hessian ........................................ 173
        9.3.2  Practical Resolution of the Secondary Adjoint
               Equation ....................................... 178
        9.3.3  Hessian Recipe ................................. 179
        9.3.4  Perfectly Elastic and Isotropic Medium ......... 181
        9.3.5  Perfectly Elastic Medium with Radial
               Anisotropy ..................................... 183
        9.3.6  Isotropic Visco-Elastic Medium ................. 185
10 The Frequency-Domain Discrete Adjoint Method ............... 189
   10.1 General Formulation ................................... 189
   10.2 Second Derivatives .................................... 191
11 Misfit Functional and Adjoint Sources ...................... 193
   11.1 Derivative of the Pure Wave Field and the Adjoint
        Greens Function ....................................... 194
   11.2 L2 Waveform Difference ................................ 195
   11.3 Cross-Correlation Time Shifts ......................... 197
   11.4 L2 Amplitudes ......................................... 200
   11.5 Time-Frequency Misfits ................................ 201
        11.5.1 Definition of Phase and Envelope Misfits ....... 202
        11.5.2 Practical Implementation of Phase Difference
               Measurements ................................... 203
        11.5.3 An Example ..................................... 205
        11.5.4 Adjoint Sources ................................ 207
12 Frécnet and Hessian Kernel Gallery ......................... 211
   12.1 Body Waves ............................................ 212
        12.1.1 Cross-Correlation Time Shifts .................. 213
        12.1.2 L2 Amplitudes .................................. 219
   12.2 Surface Waves ......................................... 221
        12.2.1 Isotropic Earth Models ......................... 221
        12.2.2 Radial Anisotropy .............................. 224
   12.3 Hessian Kernels: Towards Quantitative Trade-Off and
        Resolution Analysis ................................... 225
   12.4 Accuracy-Adaptive Time Integration .................... 229

Part III Applications

13 Full Waveform Tomography on Continental Scales ............. 233
   13.1 Motivation ............................................ 233
   13.2 Solution of the Forward Problem ....................... 235
        13.2.1 Spectral Elements in Natural Spherical
               Coordinates .................................... 235
        13.2.2 Implementation of Long-Wavelength Equivalent
               Crustal Models ................................. 238
   13.3 Quantification of Waveform Differences ................ 246
   13.4 Application to the Australasian Upper Mantle .......... 249
        13.4.1 Data Selection and Processing .................. 251
        13.4.2 Initial Model .................................. 253
        13.4.3 Model Parameterisation ......................... 255
        13.4.4 Tomographic Images and Waveform Fits ........... 256
        13.4.5 Resolution Analysis ............................ 260
   13.5 Discussion ............................................ 261
        13.5.1 Forward Problem Solution ....................... 262
        13.5.2 The Crust ...................................... 262
        13.5.3 Time-Frequency Misfits ......................... 262
        13.5.4 Dependence on the Initial Model ................ 263
        13.5.5 Anisotropy ..................................... 263
        13.5.6 Resolution ..................................... 264
14 Application of Full Waveform Tomography to Active-Source
   Surface-Seismic Data ....................................... 267
   14.1 Introduction .......................................... 267
   14.2 Data .................................................. 268
   14.3 Data Pre-conditioning and Weighting ................... 271
   14.4 Misfit Functional ..................................... 272
   14.5 Initial Model ......................................... 272
   14.6 Inversion and Results ................................. 274
   14.7 Data Fit .............................................. 276
   14.8 Discussion ............................................ 278
15 Source Stacking Data Reduction for Full Waveform
   Tomography at the Global Scale ............................. 281
   15.1 Introduction .......................................... 281
   15.2 Data Reduction ........................................ 282
   15.3 The Source Stacked Inverse Problem .................... 283
   15.4 Validation Tests ...................................... 284
        15.4.1 Parameterisation ............................... 285
        15.4.2 Experiment Setup and Input Models .............. 285
        15.4.3 Test in a Simple Two-Parameter Model ........... 287
        15.4.4 Tests in a Realistic Degree-6 Global Model ..... 289
   15.5 Towards Real Cases: Dealing with Missing Data ......... 294
   15.6 Discussion and Conclusions ............................ 298

Appendix A  Mathematical Background for the Spectral-
   Element Method ............................................. 301
   A.l  Orthogonal Polynomials ................................ 301
   A.2  Function Interpolation ................................ 302
        A.2.1  Interpolating Polynomial ....................... 302
        A.2.2  Lagrange Interpolation ......................... 303
        A.2.3  Lobatto Interpolation .......................... 305
        A.2.4  Fekete Points .................................. 309
        A.2.5  Interpolation Error ............................ 310
   A.3  Numerical Integration ................................. 312
        A.3.1  Exact Numerical Integration and the Gauss
               Quadrature ..................................... 312
        A.3.2  Gauss-Legendre-Lobatto Quadrature .............. 314
Appendix В  Time-Frequency Transformations .................... 317


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:28 2019. Размер: 17,208 bytes.
Посещение N 1797 c 29.01.2013