Ambrosio L. Gradient flows: in metric spaces and in the space of probability measures (Basel; Boston, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAmbrosio L. Gradient flows: in metric spaces and in the space of probability measures / L.Ambrosio, N.Gigli, G.Savaré. - 2nd ed. - Basel; Boston: Birkhäuser, 2008. - vii, 334 p.: ill. - (Lectures in mathematics ETH Zürich). - Bibliogr.: p.321-331. - Ind.: p.333-334. - ISBN 978-3-7643-8721-2
 

Оглавление / Contents
 
Preface to the Second Edition .................................. ix
Introduction .................................................... 1
Notation ....................................................... 18

I  Gradient Flow in Metric Spaces .............................. 21

1  Curves and Gradients in Metric Spaces ....................... 23
   1.1  Absolutely continuous curves and metric derivative ..... 23
   1.2  Upper gradients ........................................ 26
   1.3  Curves of maximal slope ................................ 30
   1.4  Curves of maximal slope in Hilbert and Banach spaces ... 32
2  Existence of Curves of Maximal Slope ........................ 39
   2.1  Main topological assumptions ........................... 42
   2.2  Solvability of the discrete problem and compactness
        of discrete trajectories ............................... 44
   2.3  Generalized minimizing movements and curves of
        maximal slope .......................................... 45
   2.4  The (geodesically) convex case ......................... 49
3  Proofs of the Convergence Theorems .......................... 59
   3.1  Moreau-Yosida approximation ............................ 59
   3.2  A priori estimates for the discrete solutions .......... 66
   3.3  A compactness argument ................................. 69
   3.4  Conclusion of the proofs of the convergence theorems ... 71
4  Generation of Contraction Semigroups ........................ 75
   4.1  Cauchy-type estimates for discrete solutions ........... 82
        4.1.1  Discrete variational inequalities ............... 82
        4.1.2  Piecewise affine interpolation and comparison
               results ......................................... 84
   4.2  Convergence of discrete solutions ...................... 89
        4.2.1  Convergence when the initial datum u0 fig.1 D(Ø) .... 89
        4.2.2  Convergence when the initial datum u0 fig.1 D(Ø) .... 92
   4.3  Regularizing effect, uniqueness and the semigroup
        property ............................................... 93
   4.4  Optimal error estimates ................................ 97
        4.4.1  The case λ = 0 .................................. 97
        4.4.2  The case λ ≠ 0 .................................. 99

II  Gradient Flow in the Space of Probability Measures ........ 103

5  Preliminary Results on Measure Theory ...................... 105
   5.1  Narrow convergence, tightness, and uniform
        integrability ......................................... 106
        5.1.1  Unbounded and l.s.c. integrands ................ 109
        5.1.2  Hilbert spaces and weak topologies ............. 113
   5.2  Transport of measures ................................. 118
   5.3  Measure-valued maps and disintegration theorem ........ 121
   5.4  Convergence of plans and convergence of maps .......... 124
   5.5  Approximate differentiability and area formula in
        Euclidean spaces ...................................... 128
6  The Optimal Transportation Problem ......................... 133
   6.1  Optimality conditions ................................. 135
   6.2  Optimal transport maps and their regularity ........... 139
        6.2.1  Approximate differentiability of the optimal
               transport map .................................. 142
        6.2.2  The infinite dimensional case .................. 147
        6.2.3  The quadratic case p = 2 ....................... 149
7  The Wasserstein Distance and its Behaviour along
   Geodesies .................................................. 151
   7.1  The Wasserstein distance .............................. 151
   7.2  Interpolation and geodesies ........................... 158
   7.3  The curvature properties of fig.22(X) ..................... 160
8  A.C. Curves in fig.2p(X) and the Continuity Equation ........... 167
   8.1  The continuity equation in fig.3d ......................... 169
   8.2  A probabilistic representation of solutions of the
        continuity equation ................................... 178
   8.3  Absolutely continuous curves in fig.2p(X) ................. 182
   8.4  The tangent bundle to fig.2p(X) ........................... 189
   8.5  Tangent space and optimal maps ........................ 194
9  Convex Functionals in fig.2p(X) ................................ 201
   9.1  A-geodesically convex functionals in fig.2p(X) ............ 202
   9.2  Convexity along generalized geodesies ................. 205
   9.3  Examples of convex functionals in fig.2p(X) ............... 209
   9.4  Relative entropy and convex functionals of
        measures .............................................. 215
        9.4.1  Log-concavity and displacement convexity ....... 220
10 Metric Slope and Subdifferential Calculus in fig.2p(X) ......... 227
   10.1 Subdifferential calculus in fig.2r2(X): the regular 
               case ........................................... 229
        10.1.1 The case of A-convex functionals along
               geodesies ...................................... 231
        10.1.2 Regular functionals ............................ 232
   10.2 Differentiability properties of the p-Wasserstein
        distance .............................................. 234
   10.3 Subdifferential calculus in fig.2p(X): the general
        case .................................................. 240
        10.3.1 The case of λ-convex functionals along
               geodesies ...................................... 244
        10.3.2 Regular functionals ............................ 246
   10.4 Example of subdifferentials ........................... 254
        10.4.1 Variational integrals: the smooth case ......... 254
        10.4.2 The potential energy ........................... 255
        10.4.3 The internal energy ............................ 257
        10.4.4 The relative internal energy ................... 265
        10.4.5 The interaction energy ......................... 267
        10.4.6 The opposite Wasserstein distance .............. 269
        10.4.7 The sum of internal, potential and
               interaction energy ............................. 272
        10.4.8 Relative entropy and Fisher information in
               infinite dimensions ............................ 276
11 Gradient Flows and Curves of Maximal Slope in fig.2p(X) ........ 279
   11.1 The gradient flow equation and its metric
        formulations .......................................... 280
        11.1.1 Gradient flows and curves of maximal slope ..... 283
        11.1.2 Gradient flows for λ-convex functionals ........ 284
        11.1.3 The convergence of the "Minimizing Movement"
               scheme ......................................... 286
   11.2 Gradient flows for λ-convex functionals along
        generalized geodesies ................................. 295
        11.2.1 Applications to Evolution PDE's ................ 298
   11.3 Gradient flows in fig.2p(X) for regular functionals ....... 304
12 Appendix ................................................... 307
   12.1 Caratheodory and normal integrands .................... 307
   12.2 Weak convergence of plans and disintegrations ......... 308
   12.3 PC metric spaces and their geometric tangent cone ..... 310
   12.4 The geometric tangent spaces in fig.22(X) ................. 314
Bibliography .................................................. 331
Index ......................................................... 333


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:28 2019. Размер: 12,126 bytes.
Посещение N 1568 c 29.01.2013