Zwicknagl B.M. Mathematical analysis of microstructures and low hysteresis shape memory alloys: Diss. … Dr. rer. nat. (Bonn, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаZwicknagl B.M. Mathematical analysis of microstructures and low hysteresis shape memory alloys: Diss. … Dr. rer. nat. - Bonn, 2012. - 141 p. - Ref.: p.134-141
 

Оглавление / Contents
 
1  Introduction ................................................. 
2  Continuum model of elastic crystals .......................... 3
   2.1  Notation and general background ......................... 3
   2.2  Symmetries among the crystallographic parameters for 
        different twin systems .................................. 6
3  Energy barriers accompanying martensitic nucleation ......... 10
   3.1  Incompatibility due to λ2 ≠ 1: Phase mixture ........... 10
        3.1.1  Connection to the Kohn-Müller model with
               unequal volume fractions ........................ 12
   3.2  Incompatibility of average strains: Failure of self-
        accommodation .......................................... 19
   3.3  Energy barrier and hysteresis .......................... 21
        3.3.1  Martensitic nucleus surrounded by austenite ..... 21
        3.3.2  Nucleation at the boundary ...................... 24
4  Periodic non-branching transition layers .................... 27
   4.1  Influence of reorientation ............................. 27
        4.1.1  Piecewise affine transition layers from [131]
               revisited ....................................... 27
        4.1.2  Symmetric versus asymmetric needles ............. 30
   4.2  The minimization problem for the elastic energy ........ 34
        4.2.1  Formulation on the reference domain ............. 38
        4.2.2  Computation of the Г-limit for λ → 0 ............ 46
5  The Г-limit problem ......................................... 53
   5.1  Existence, uniqueness and some regularity of a 
        solution ............................................... 54
   5.2  Needles are pinched .................................... 62
        5.2.1  Extensions of fractional order Sobolev 
               functions ....................................... 62
   5.3  Approximate solution of the Г-limit problem ............ 69
        5.3.1  Semi-quantitative estimates via Fourier
               ansatz .......................................... 70
        5.3.2  Numerical approximation via finite elements ..... 97
   5.4  Model hierarchy ....................................... 103
6  Multiscale approximation and reproducing kernel Hilbert
   space methods .............................................. 110
   6.1  Numerical solution to variational inequalities ........ 111
   6.2  Notation and basic definitions ........................ 114
   6.3  Existence of finite level based approximating 
        interpolants .......................................... 118
   6.4  Bernstein inequalities ................................ 121
   6.5  Interpolation with truncated kernel ................... 126
   6.6  Derivative-free sampling inequalities ................. 129

A H1/2-seminorm for sawtooth-type functions ................... 132
Bibliography .................................................. 134


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:28 2019. Размер: 6,623 bytes.
Посещение N 1609 c 22.01.2013