Kislyakov S. Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals (Basel, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKislyakov S. Extremal problems in interpolation theory, Whitney-Besicovitch coverings, and singular integrals / S.Kislyakov, N.Kruglyak; PAN. - Basel: Birkhäuser, 2013. - x, 316 p.: ill. - (Monografie matematyczne. New series; vol.74). - ISBN 978-3-0348-0468-4
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix
Introduction .................................................... 1
Definitions, notation, and some standard facts ................. 13

I  Background .................................................. 21
1  Classical Calderón-Zygmund decomposition and real
   interpolation ............................................... 23
   1.1  Riesz rising sun lemma and the Calderón-Zygmund
        procedure .............................................. 23
        1.1.1  Riesz rising sun lemma .......................... 23
        1.1.2  Calderón-Zygmund lemma .......................... 25
        1.1.3  Calderón-Zygmund decomposition .................. 26
        1.1.4  A weak type inequality for linear operators ..... 29
        1.1.5  Hardy-Littlewood maximal operator ............... 31
   1.2  Norms on BMO and Lipschitz spaces ...................... 33
        1.2.1  John-Nirenberg inequality ....................... 34
        1.2.2  Equivalence of Campanato norms .................. 36
   1.3  Relationship with real interpolation ................... 39
   1.4  An elementary stability theorem ........................ 42
        1.4.1  A proof with much interpolation ................. 42
        1.4.2  Stabilization à la Bourgain ..................... 43
        1.4.3  Some consequences ............................... 44
   Notes and remarks ........................................... 45
2  Singular integrals .......................................... 47
   2.1  Hilbert transformation ................................. 48
        2.1.1  Hilbert transformation on L1 .................... 50
        2.1.2  The operator H on Lp, 1 < p <  ................. 51
   2.2  General definition ..................................... 52
        2.2.1  Examples ........................................ 54
        2.2.2  Additional information .......................... 61
   2.3  Vector-valued analogs .................................. 62
   Notes and remarks ........................................... 64
3  Classical covering theorems ................................. 65
   3.1  Classical covering theorems and partitions of unity .... 65
        3.1.1  The Besicovitch q-process ....................... 65
        3.1.2  Besicovitch theorem ............................. 67
        3.1.3  Wiener lemma .................................... 70
        3.1.4  Whitney lemma, WB-coverings, and partitions of
               unity ........................................... 71
   3.2  Another Calderon Zygmund procedure ..................... 77
   3.3  Stability of near-minimizers for the couple (L1,
        L) .................................................... 82
        3.3.1  Statement and proof ............................. 82
        3.3.2  Vector form of the stability theorem ............ 86
   Notes and remarks ........................................... 89
4  Spaces of smooth functions and operators on them ............ 91
   4.1  Summary ................................................ 91
        4.1.1  Homogeneous spaces of smooth functions .......... 91
        4.1.2  Singular integral operators ..................... 95
   4.2  Morrey-Campanato spaces: proofs ........................ 97
   4.3  BMO and atomic H1 ..................................... 102
   4.4  Continuity of operators on BMO and Lipschitz spaces ... 106
        4.4.1  A pointwise estimate ........................... 108
        4.4.2  Norm estimates ................................. 112
   4.5  Singular integrals related to wavelet expansions ...... 114
        4.5.1  More general operators ......................... 115
        4.5.2  Consequences ................................... 118
        4.5.3  An omitted proof ............................... 118
   4.6  Weak L1-boundedness ................................... 120
   Notes and remarks .......................................... 121
5  Some topics in interpolation ............................... 123
   5.1  Main notions .......................................... 123
   5.2  Near-minimizers and interpolation ..................... 127
   5.3  Near-minimizers for Lp,q- and К-functional ............ 129
   5.4  Near-minimizers for E- and K-functionals .............. 131
   5.5  The elementary stability theorem revisited ............ 135
   5.6  K-closed subcouples and stability ..................... 136
   5.7  Linearization ......................................... 141
   Notes and remarks .......................................... 143
6  Regularization for Banach spaces ........................... 145
   Notes and remarks .......................................... 150
7  Stability for analytic Hardy spaces ........................ 153
   Notes and remarks .......................................... 155

II  Advanced theory ........................................... 159

8  Controlled coverings ....................................... 161
   8.1  Whitney lemma and a theorem about Lipschitz
        families .............................................. 163
        8.1.1  Auxiliary lemmas ............................... 166
        8.1.2  Finite overlap ................................. 167
        8.1.3  Meshing algorithm and the strong engagement
               lemma .......................................... 169
        8.1.4  Modified Besicovitch q-process ................. 171
        8.1.5  Proof of Theorem 8.16 .......................... 172
        8.1.6  Proof of Theorem 8.9 ........................... 173
        8.1.7  Proof of Theorem 8.13 .......................... 174
   8.2  Controlled extension and preservation of the
        α-capacity ............................................ 175
        8.2.1  The Besicovitch process with a Lipschitz
               condition ...................................... 177
        8.2.2  Construction of a WB-covering .................. 180
        8.2.3  Proof of the controlled extension theorem ...... 183
        8.2.4  Proof of the theorem on the preservation of
               α-capacity for α fig.1 (1 - 1/n, 1) ................ 185
   8.3  Controlled contraction and preservation of the
        α-capacity ............................................ 186
        8.3.1  Besicovitch q-process with a Lipschitz
               condition for controlled contraction ........... 188
        8.3.2  Construction of a WB-covering .................. 190
        8.3.3  Proof of the contraction theorem ............... 191
   8.4  Preservation of the α-capacity (α < 0) ................ 194
   Notes and remarks .......................................... 196
9  Construction of near-minimizers ............................ 197
   9.1  Estimates for derivatives of approximants ............. 198
   9.2  Near-minimizers for Sobolev spaces: the couples
        (Lp, Wkq) ............................................. 200
        9.2.1  Near-minimizers for the couple (Lp, Wkp) ....... 201
        9.2.2  Near-minimizers for the couple (Lp, Wkq) when
               q ≠ p .......................................... 205
        9.2.3  Statement and proof of the main result ......... 209
   9.3  Near-minimizers for Morrey-Campanato spaces: the
        couples (Lp, Ċα,kp) ................................... 212
        9.3.1  Algorithm for constructing near-minimizers ..... 213
        9.3.2  Statement and the proof of the main result ..... 214
   Notes and remarks .......................................... 219
10 Stability of near-minimizers ............................... 221
   10.1 Construction of approximating polynomials ............. 222
   10.2 Stability theorems: statements and applications ....... 227
        10.2.1 Statements ..................................... 227
        10.2.2 Applications ................................... 229
   10.3 Proof of Theorems 10.4-10.6 ........................... 232
        10.3.1 Proof of the main lemma ........................ 236
   Notes and remarks .......................................... 241
11 The omitted case of a limit exponent ....................... 243
   11.1 Description of the algorithm .......................... 244
   11.2 Principal results, and outlines of the proofs ......... 247
        11.2.1 Statement of the main results .................. 247
   11.3 Proofs ................................................ 249
        11.3.1 The case of t ≥ t* ............................. 249
        11.3.2 Lemmas valid in the multidimensional case
               and Theorem 11.3 ............................... 251
        11.3.3 Geometric lemmas and the proofs of Theorems
               11.4 and 11.5 .................................. 255
   Notes and remarks .......................................... 272

A  Appendix. Near-minimizers for Brudnyi and Triebel-
   Lizorkin spaces ............................................ 273
   A.l  Description of the general algorithm .................. 273
   A.2  Morrey spaces built on Brudnyi spaces ................. 276
        A.2.1  Auxiliary lemmas ............................... 279
        A.2.2  Proof of the main result (Theorem A.3) ......... 285
   A.3 Morrey spaces built on Triebel-Lizorkin spaces ......... 291
        A.3.1  Auxiliary lemmas ............................... 293
        A.3.2  Proof of the main result (Theorem A. 12) ....... 300
Notes and remarks ............................................. 304
Bibliography .................................................. 305
Index ......................................................... 313


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:26 2019. Размер: 13,949 bytes.
Посещение N 1862 c 22.01.2013