| Kreith F. Principles of sustainable energy / F.Kreith, J.F.Kreider. - Boca Raton; London: CRC Press, 2011. - xxiii, 855 p., [16] p. of plates: ill. (some col.), maps. - (Mechanical engineering series; 46). - Incl. bibl. ref. - Ind.: p.837-855. - ISBN 978-1-4398-1407-9
|
Foreword ..................................................... xvii
Preface ....................................................... xix
Contributing Authors ........................................ xxiii
1 Introduction to Sustainable Energy ........................... 1
1.1 Global Sustainability ................................... 5
1.1.1 Sustainability Based on Water .................... 5
1.1.2 Food Supply ...................................... 9
1.1.3 Energy .......................................... 10
1.2 Role of Energy Conservation ............................ 18
1.3 Nuclear Energy ......................................... 26
1.3.1 Available Nuclear Resources ..................... 26
1.4 Hydrogen ............................................... 29
1.5 Geothermal Energy ...................................... 33
1.6 Global Status and Potential of Renewable Energy ........ 36
1.6.1 Biomass and Hydroelectric Sources ............... 36
1.6.2 Wind Power ...................................... 39
1.6.3 Solar Energy .................................... 41
1.7 Summary of Renewable Energy Resources .................. 43
1.8 Orders of Magnitude .................................... 46
Energy Units and Conversion Factors ......................... 54
Problems .................................................... 57
Online Resources ............................................ 60
References .................................................. 61
Suggested Readings .......................................... 63
2 Economics of Energy Generation and Conservation Systems ..... 65
2.1 Time Value of Money .................................... 66
2.2 Inflation .............................................. 70
2.3 Societal Costs ......................................... 72
2.4 Total Life Cycle Costs ................................. 74
2.5 Internal Rate of Return ................................ 76
2.6 Levelized Cost of Energy ............................... 82
2.7 Example of a Typical Cash Flow Scenario ................ 83
2.8 Energy Analysis Methodology ............................ 87
2.8.1 Process Chain Analysis .......................... 88
2.8.2 Input-Output (I/O) Analysis ..................... 89
2.9 EROI for a Wind Energy System ......................... 102
2.10 EROI for Nuclear Power ................................ 105
Problems ................................................... 109
Appendix 2.A Capital Recovery Factor ....................... 112
References ................................................. 115
3 Wind Energy ................................................ 117
Contributing Author: Gary E. Pawlas
3.1 Wind Power in a Nutshell .............................. 117
3.2 Power and Energy ...................................... 119
3.3 Fact or Fiction: Common Questions about Wind
Turbines .............................................. 122
3.3.1 Noise Issues ................................... 122
3.3.2 Lifetime Environmental Impact .................. 123
3.3.3 Bird and Bat Kills ............................. 124
3.4 History of Wind Turbine Development: HAWTs and
VAWTs ................................................. 125
3.4.1 VAWT ........................................... 128
3.4.2 HAWT ........................................... 128
3.5 Introduction to Wind Turbine Performance .............. 129
3.6 Aerodynamics .......................................... 130
3.7 Wind Characteristics .................................. 134
3.7.1 Wind Generation ................................ 134
3.7.2 Distribution of Wind ........................... 135
3.7.3 Wind Speed Increasing with Height .............. 137
3.7.4 Log Law Wind Speed Profile ..................... 138
3.7.5 Power Law Wind Speed Profile ................... 140
3.7.6 Probability of Observing a Given Wind Speed .... 141
3.8 Turbine Performance ................................... 146
3.8.1 Control Schemes ................................ 156
3.9 Cost of Energy ........................................ 158
3.9.1 Definitions .................................... 159
3.10 Wind Farms ............................................ 163
3.11 Offshore Wind Energy .................................. 167
3.12 Additional Topics for Study ........................... 173
Acknowledgment ............................................. 174
Problems ................................................... 174
References ................................................. 180
4 Capturing Solar Energy through Biomass ..................... 185
Contributing Authors: Robert C. Brown and Mark M. Wright
4.1 Introduction .......................................... 185
4.2 Biomass Feedstocks .................................... 186
4.2.1 Introduction ................................... 186
4.2.2 Waste Materials ................................ 186
4.2.3 Energy Crops ................................... 187
4.2.4 Size of Resource Base .......................... 189
4.2.5 Important Properties of Biomass ................ 191
4.2.6 Summary ........................................ 195
Problems ................................................... 195
4.3 Conversion of Biomass to Gaseous Fuels ................ 196
4.3.1 Introduction ................................... 196
4.3.2 Anaerobic Digestion ............................ 196
4.3.3 Thermal Gasification ........................... 199
4.3.4 Summary ........................................ 207
Problems ................................................... 208
4.4 Transportation Fuels from Biomass ..................... 208
4.4.1 Introduction ................................... 208
4.4.2 Grain Ethanol .................................. 211
4.4.3 Cellulosic Ethanol ............................. 213
4.4.4 Other Fuels from Sugar Fermentation ............ 214
4.4.5 Ethanol from Syngas ............................ 216
4.4.6 Ethanol from Bio-Oil ........................... 217
4.4.7 Methanol ....................................... 217
4.4.8 Mixed Alcohols ................................. 218
4.4.9 Fischer-Tropsch Liquids ........................ 219
4.4.10 Fuels from Pyrolysis Oils ...................... 221
4.4.11 Fuels from Biocrude ............................ 223
4.4.12 Fuels from Lipids .............................. 223
4.4.13 Methylated Furans .............................. 227
4.4.14 Compressed Gases as Transportation Fuel ........ 229
4.4.15 Well-to-Wheel Analysis of Transportation
Fuels .......................................... 230
4.4.16 Summary ........................................ 232
Problems ................................................... 233
4.5 Conversion of Biomass to Electricity .................. 234
4.5.1 Introduction .................................... 234
4.5.2 Direct Combustion ............................... 234
4.5.3 Combustion Equipment ............................ 237
4.5.4 Summary ......................................... 240
Problems ................................................... 240
4.6 Conclusions ........................................... 241
Solutions to Selected Problems ............................. 241
Additional Problems ........................................ 245
References ................................................. 247
5 Fundamentals of Solar Radiation ............................ 255
5.1 The Physics of the Sun and Its Energy Transport ....... 255
5.2 Thermal Radiation Fundamentals ........................ 256
5.2.1 Black-Body Radiation ........................... 258
5.2.2 Radiation Function Tables ...................... 258
5.2.3 Intensity of Radiation and Shape Factor ........ 260
5.2.4 Transmission of Radiation through a Medium ..... 266
5.3 Sun-Earth Geometric Relationship ...................... 267
5.3.1 Solar Time and Angles .......................... 270
5.3.2 Sun-Path Diagram ............................... 277
5.3.3 The Shadow-Angle Protractor .................... 279
5.4 Solar Radiation ....................................... 283
5.4.1 The Extraterrestrial Solar Radiation ........... 284
5.5 Estimation of Terrestrial Solar Radiation ............. 288
5.5.1 Atmospheric Extinction of Solar Radiation ...... 289
5.5.2 Solar Radiation on Clear Days .................. 290
5.5.3 Solar Radiation on a Tilted Surface ............ 291
5.5.4 Monthly Solar Radiation Estimation Models ...... 295
5.6 Models Based on Long-Term Measured Horizontal Solar
Radiation ............................................. 298
5.6.1 Monthly Solar Radiation on Tilted Surfaces ..... 298
5.6.2 Circumsolar or Anisotropic Diffuse Solar
Radiation ...................................... 303
5.6.3 Daily Solar Radiation on Tilted Surfaces ....... 304
5.6.4 Hourly Solar Radiation on Tilted Surfaces ...... 305
5.7 Measurement of Solar Radiation ........................ 307
5.7.1 Instruments for Measuring Solar Radiation
and Sunshine ................................... 307
5.7.2 Detectors for Solar Radiation
Instrumentation ................................ 311
5.7.3 Measurement of Sunshine Duration ............... 311
5.7.4 Measurement of Spectral Solar Radiation ........ 312
5.7.5 Solar Radiation Data and Web Sites ............. 312
Problems ................................................... 313
Appendix A ................................................. 316
References ................................................. 370
6 Photovoltaics .............................................. 373
6.1 Semiconductors ........................................ 375
6.1.1 p-n Junction ................................... 377
6.1.2 The Photovoltaic Effect ........................ 379
6.2 Analysis of Photovoltaic Cells ........................ 383
6.2.1 Efficiency of Solar Cells ...................... 388
6.2.2 Multijunction Solar Cells ...................... 389
6.2.3 Design of a Photovoltaic System ................ 390
6.3 Manufacture of Solar Cells and Panels ................. 392
6.3.1 Single Crystal and Polycrystalline Cells ....... 392
6.3.2 Amorphous Silicon and Multijunction Thin-Film
Fabrication .................................... 396
6.4 Design for Remote Photovoltaic Applications ........... 397
6.4.1 Estimation of Loads and Load Profiles .......... 398
6.4.2 Estimation of Available Solar Radiation ........ 399
6.4.3 PV System Sizing ............................... 400
6.4.4 Water Pumping Applications ..................... 402
6.5 Thin-Film PV Technology ............................... 403
6.6 Multilayer PV Technology .............................. 408
Problems ................................................... 414
References ................................................. 418
7 Solar Heating and Cooling of Buildings ..................... 421
7.1 Radiative Properties and Characteristics of
Materials ............................................. 422
7.1.1 Selective Surfaces ............................. 427
7.1.2 Reflecting Surfaces ............................ 427
7.1.3 Transparent Materials .......................... 429
7.2 Flat-Plate Collectors ................................. 431
7.2.1 Liquid-Type Collectors ......................... 431
7.2.2 Air-Type Collectors ............................ 432
7.2.3 Glazings ....................................... 433
7.2.3.1 Absorbers ............................. 434
7.2.4 Energy Balance for a Flat-Plate Collector ...... 435
7.2.4.1 Collector Heat-Loss Conductance ....... 436
7.2.5 Thermal Analysis of Flat-Plate Collector-
Absorber Plate ................................. 441
7.2.6 Collector Efficiency Factor .................... 445
7.2.7 Collector Heat-Removal Factor .................. 446
7.2.8 Transient Effects .............................. 450
7.2.9 Air-Cooled Flat-Plate Collector ................ 453
7.3 Evacuated Tube Collectors ............................. 454
7.3.1 Thermal Analysis of an Evacuated Tube
Collector ...................................... 456
7.4 Experimental Testing of Collectors .................... 457
7.4.1 Testing Standards for Solar Thermal
Collectors ..................................... 460
7.4.1.1 Time Constant ......................... 460
7.4.1.2 Thermal Performance ................... 461
7.4.1.3 Incidence Angle Modifier .............. 461
7.5 Calculations of Heating and Hot Water Loads in
Buildings ............................................. 461
7.5.1 Calculation of Heat Loss ....................... 463
7.5.2 Internal Heat Sources in Buildings ............. 466
7.5.3 The Degree-Day Method .......................... 466
7.5.4 Service Hot Water Load Calculation ............. 470
7.6 Solar Water-Heating Systems ........................... 472
7.6.1 Natural Circulation Systems .................... 472
7.6.2 Forced-Circulation Systems ..................... 475
7.6.3 Industrial Process Heat Systems ................ 477
7.7 Liquid-Based Solar-Heating Systems for Buildings ...... 477
7.7.1 Physical Configurations of Active Solar
Heating Systems ................................ 478
7.7.2 Solar Collector Orientation .................... 479
7.7.3 Fluid Flow Rates ............................... 479
7.7.4 Unglazed Transpired Wall System for Air
Preheating ..................................... 480
7.8 Methods of Modeling and Design of Solar Heating
Systems ............................................... 483
7.8.1 Design of a Liquid-Based Solar Heating System
by -Chart ..................................... 483
7.8.2 The Utilizability Method ....................... 492
7.9 Solar Cooling ......................................... 492
7.9.1 Cooling Requirements for Buildings ............. 493
7.9.2 Vapor-Compression Cycle ........................ 497
7.9.3 Absorption Air-Conditioning .................... 502
7.10 Solar Desiccant Dehumidification ...................... 513
7.10.1 Solid Desiccant Cooling System ................. 513
7.10.2 Liquid Desiccant Cooling System ................ 516
Problems ................................................... 518
Appendix A .................................................... 530
References .................................................... 546
8 Solar Process Heat and Thermal Power ....................... 549
8.1 Historical Perspective ................................ 549
8.2 Solar Industrial Process Heat ......................... 552
8.2.1 SIPH for Textile Industries .................... 557
8.2.2 SIPH System for Milk Processing ................ 558
8.3 Parabolic Collectors .................................. 561
8.3.1 Compound Parabolic Concentrators ............... 563
8.3.2 Single-Axis Tracking Parabolic Trough
Collectors ..................................... 567
8.4 Long-Term Performance of SIPH Systems ................. 577
8.4.1 The Utilizability Method ....................... 578
8.4.2 Critical Solar Intensity Ratio X ............... 579
8.4.3 Collection Period (Δtc) ........................ 580
8.4.4 Empirical Expressions for Utilizability ........ 581
8.4.5 Yearly Collector Performance ................... 586
8.4.6 TRNSYS—Computer Simulation Program ............. 589
8.5 Solar Thermal Power ................................... 589
8.5.1 Rankine Cycle .................................. 589
8.5.2 Components of a Rankine Power Plant ............ 594
8.5.3 Choice of Working Fluid ........................ 596
8.6 Examples of Solar Thermal Power Plants ................ 599
8.6.1 Parabolic Trough-Based Power Plant ............. 599
8.6.2 Central Receiver Systems ....................... 604
8.7 Parabolic Dish Systems and Stirling Engines ........... 613
8.7.1 Thermodynamics of a Stirling Cycle ............. 614
8.7.2 Examples of Solar Stirling Power Systems ....... 617
Problems ................................................... 621
References ................................................. 624
9 Passive Solar Heating, Cooling, and Daylighting ............ 629
Contributing Author: Jeffrey H. Morehouse
9.1 Introduction .......................................... 629
9.1.1 Distinction between a Passive System and
Energy Conservation ............................ 629
9.2 Key Elements of Economic Consideration ................ 630
9.2.1 Performance: Net Energy Savings ................ 630
9.2.2 Cost: Over and Above "Normal" Construction ..... 630
9.2.3 General System Application Status and Costs .... 630
9.3 Solar Thermosyphon Water Heating ...................... 631
9.3.1 Thermosyphon Concept ........................... 632
9.3.2 Thermo-Fluid System Design Considerations ...... 633
9.4 Passive Solar Heating Design Fundamentals ............. 635
9.4.1 Types of Passive Heating Systems ............... 636
9.4.2 Fundamental Concepts for Passive Heating
Design ......................................... 638
9.5 Passive Design Approaches ............................. 638
9.5.1 The First Level: Generalized Methods ........... 640
9.5.1.1 Load .................................. 640
9.5.1.2 Solar Savings Fraction ................ 640
9.5.1.3 LCR ................................... 641
9.5.1.4 Storage ............................... 641
9.5.2 The Second Level: LCR Method ................... 649
9.5.3 The Third Level: SLR Method .................... 673
9.6 Passive Space Cooling Design Fundamentals ............. 678
9.6.1 Solar Control .................................. 678
9.6.2 Natural Convection/Ventilation ................. 678
9.6.3 Evaporative Cooling ............................ 681
9.6.4 Nocturnal and Radiative Cooling Systems ........ 681
9.6.5 Earth Contact Cooling (or Heating) ............. 683
9.6.5.1 Heat Transfer Analysis ................ 684
9.6.5.2 Soil Temperatures and Properties ...... 686
9.6.5.3 Generalized Results from
Experiments ........................... 686
9.7 Daylighting Design Fundamentals ....................... 688
9.7.1 Lighting Terms and Units ....................... 688
9.7.2 Approach to Daylighting Design ................. 688
9.7.3 Sun-Window Geometry ............................ 690
9.7.3.1 Solar Altitude Angle (α) .............. 690
9.7.3.2 Sun-Window Azimuth Angle Difference
(Φ) ................................... 690
9.7.4 Daylighting Design Methods ..................... 691
9.7.4.1 Lumen Method of Sidelighting
(Vertical Windows) .................... 691
9.7.4.2 Lumen Method of Skylighting ........... 700
9.7.5 Daylighting Controls and Economics ............. 705
Defining Terms ............................................. 708
References ................................................. 708
Suggested Readings ......................................... 710
For Further Information .................................... 711
10 Energy Storage ............................................. 713
10.1 Overview of Storage Technology ........................ 713
10.1.1 Applications ................................... 715
10.1.2 Technology Characterization .................... 717
10.2 Mechanical Technologies ............................... 719
10.2.1 Pumped Hydroelectric Energy Storage ............ 719
10.2.1.1 Turbines .............................. 721
10.2.2 Compressed Air Energy Storage .................. 723
10.2.2.1 Round Trip Efficiency of CAES ......... 725
10.2.2.2 Comparison between CAES and PHES ...... 726
10.2.2.3 CAES Volumetric Energy Density ........ 727
10.2.2.4 Existing CAES Plants .................. 730
10.2.3 Flywheels ...................................... 731
10.3 Direct Electrical Technologies ........................ 732
10.3.1 Ultracapacitors ................................ 732
10.3.2 Superconducting Magnetic Energy Storage ........ 733
10.4 Fundamentals of Batteries and Fuel Cells .............. 733
10.4.1 Principles of Battery Operation ................ 735
10.4.2 Cell Physics ................................... 737
10.5 Rechargeable Batteries ................................ 738
10.5.1 Lead-Acid Batteries ............................ 739
10.5.2 Nickel Metal (Ni-Cd and Ni-MH) ................. 740
10.5.3 Lithium Ion .................................... 742
10.5.4 Flow Batteries ................................. 743
10.6 Fuel Cells and Hydrogen ............................... 745
10.6.1 Principles of Fuel Cell Operation .............. 745
10.6.2 Types of Fuel Cells ............................ 746
10.6.3 Generation of Hydrogen ......................... 748
10.6.4 Storage and Transport .......................... 749
10.6.5 Thermodynamics and Economics ................... 750
10.7 Thermal Energy Storage ................................ 751
10.7.1 Sensible Heat .................................. 751
10.7.2 Phase Change Heat Storage ...................... 753
10.7.3 Thermochemical Storage ......................... 754
10.7.4 Applications ................................... 754
10.7.5 Thermal Storage for Concentrating Collector
Systems ........................................ 756
10.7.6 Overnight Storage for Buildings and Domestic
Hot Water ...................................... 758
10.7.7 Long-Term Performance of Solar Collector
Systems with Storage ........................... 764
Problems ................................................... 769
References ................................................. 771
Battery Resources .......................................... 773
11 Ocean Energy Conversion .................................... 775
11.1 Ocean Thermal Energy Conversion ....................... 775
11.1.1 Closed-Cycle Ocean Thermal Energy Conversion ... 777
11.1.2 Open-Cycle Ocean Thermal Energy Conversion ..... 781
11.1.2.1 Direct Contact Evaporation and
Condensation .......................... 784
11.1.3 Comparison of Open- and Closed-Cycle OTEC
Systems ........................................ 786
11.1.4 Cold-Water Pipe and Pumping Requirements ....... 788
11.1.5 Economics ...................................... 789
11.2 Tidal Energy .......................................... 791
11.2.1 Introduction ................................... 791
11.2.2 Tidal Power .................................... 793
11.2.2.1 Economics of Tidal Power .............. 797
11.3 Ocean Wave Energy ..................................... 801
11.3.1 Deepwater Wave Power ........................... 801
11.3.2 Surface Wave Power ............................. 804
11.3.3 Wave Power Devices ............................. 807
11.3.3.1 Wave Capture Systems .................. 807
11.3.3.2 The Oscillating Water Column .......... 808
11.3.4 Wave Profile Devices ........................... 810
References ................................................. 811
12 Transportation ............................................. 813
12.1 Introduction .......................................... 813
12.2 Alternative Fuels ..................................... 814
12.3 Well-to-Wheel Analysis ................................ 816
12 4 Mass Transportation ................................... 817
12.5 Hybrid Electric Vehicles .............................. 819
12.6 Plug-In Hybrid Electric Vehicles ...................... 821
12.7 Advanced Ground Transportation with Biomass Fuel ...... 825
12.7.1 Petroleum Requirement .......................... 827
12.7.2 Carbon Dioxide Emissions ....................... 827
12.8 Future All-Electric System ............................ 831
12.9 Hydrogen for Transportation ........................... 832
Problems ................................................... 833
References ................................................. 835
Index ......................................................... 837
|
|