Esseni D. Nanoscale MOS transistors: semi-classical transport and applications (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаEsseni D. Nanoscale MOS transistors: semi-classical transport and applications / D.Esseni, P.Palestri, L.Selmi. - Cambridge; New York: Cambridge University Press, 2011. - xvii, 470 p.: ill. - Incl. bibl. ref. - Ind.: p.468-470. - ISBN 978-0-521-51684-6
 

Оглавление / Contents
 
Preface ........................................................ xi
Acknowledgements .............................................. xiv
Terminology .................................................... xv

1  Introduction ................................................. 1
   1.1  The historical CMOS scaling scenario .................... 1
   1.2  The generalized CMOS scaling scenario ................... 5
   1.3  Support of modeling to nano-scale MOSFET design ......... 7
   1.4  An overview of subsequent chapters ...................... 9
2  Bulk semiconductors and the semi-classical model ............ 19
   2.1  Crystalline materials .................................. 19
   2.2  Numerical methods for band structure calculations ...... 30
   2.3  Analytical band structure models ....................... 37
   2.4  Equivalent Hamiltonian and Effective Mass
        Approximation .......................................... 41
   2.5  The semi-classical model ............................... 45
3  Quantum confined inversion layers ........................... 63
   3.1  Electrons in a square well ............................. 64
   3.2  Electron inversion layers .............................. 65
   3.3  Hole inversion layers .................................. 72
   3.4  Full-band energy relation and the LCBB method .......... 81
   3.5  Sums and integrals in the к space ...................... 86
   3.6  Carrier densities at the equilibrium ................... 94
   3.7  Self-consistent calculation of the electrostatic
        potential ............................................. 100
   3.8  Summary ............................................... 108
4  Carrier scattering in silicon MOS transistors .............. 112
   4.1  Theory of the scattering rate calculations ............ 113
   4.2  Static screening produced by the free carriers ........ 128
   4.3  Scattering with Coulomb centers ....................... 143
   4.4  Surface roughness scattering .......................... 156
   4.5  Vibrations of the crystal lattice ..................... 169
   4.6  Phonon scattering ..................................... 176
   4.7  Screening of a time-dependent perturbation
        potential ............................................. 196
   4.8  Summary ............................................... 201
5  The Boltzmann transport equation ........................... 207
   5.1  The BTE for the free-carrier gas ...................... 207
   5.2  The BTE in inversion layers ........................... 214
   5.3  The BTE for one-dimensional systems ................... 223
   5.4  Momentum relaxation time approximation ................ 223
   5.5  Models based on the balance equations of the BTE ...... 241
   5.6  The ballistic transport regime ........................ 246
   5.7  The quasi-ballistic transport regime .................. 256
   5.8  Summary ............................................... 263
6  The Monte Carlo method for the Boltzmann transport
   equation ................................................... 268
   6.1  Basics of the MC method for a free-electron-gas ....... 269
   6.2  Coupling with the Poisson equation .................... 291
   6.3  The multi-subband Monte Carlo method .................. 301
   6.4  Summary ............................................... 306
7  Simulation of bulk and SOI silicon MOSFETs ................. 314
   7.1   Low field transport .................................. 314
   7.2  Far from equilibrium transport ........................ 328
   7.3  Drive current ......................................... 332
   7.4  Summary ............................................... 341
8  MOS transistors with arbitrary crystal orientation ......... 348
   8.1  Electron inversion layers ............................. 348
   8.2  Hole inversion layers ................................. 358
   8.3  Simulation results .................................... 359
   8.4  Summary ............................................... 364
9  MOS transistors with strained silicon channel .............. 366
   9.1  Fabrication techniques for strain engineering ......... 366
   9.2  Elastic deformation of a cubic crystal ................ 369
   9.3  Band structure in strained n-MOS transistors .......... 382
   9.4  Band structure in strained p-MOS transistors .......... 392
   9.5  Simulation results for low field mobility ............. 394
   9.6  Simulation results for drain current in MOSFETs ....... 398
   9.7  Summary ............................................... 399
10 MOS transistors with alternative materials ................. 406
   10.1  Alternative gate materials ........................... 406
   10.2  Remote phonon scattering due to high-k
         dielectrics .......................................... 407
   10.3  Scattering due to remote Coulomb centers ............. 423
   10.4  Simulation results for MOSFETs with high-k
         dielectrics .......................................... 425
   10.5  Alternative channel materials ........................ 430
   10.6  Germanium MOSFETs .................................... 435
   10.7  Gallium arsenide MOSFETs ............................. 440
   10.7.1  Conduction band parameters ......................... 440
   10.7.2  Phonon scattering .................................. 441
   10.7.3  Simulation results ................................. 443
   10.8  Summary .............................................. 444

Appendices .................................................... 451
A  Mathematical definitions and properties .................... 451
   A.l  Fourier transform ..................................... 451
   A.2  Fourier series ........................................ 453
   A.3  Fermi integrals ....................................... 453
В  Integrals and transformations over a finite area A ......... 455
С  Calculation of the equi-energy lines with the к•p model .... 457
   С.1  Three dimensional hole gas ............................ 457
   C.2 Two dimensional hole gas ............................... 458
D  Matrix elements beyond the envelope function
   approximation .............................................. 461
E  Charge density produced by a perturbation potential ........ 464

Index ......................................................... 468


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:36 2019 Размер: 10,153 bytes.
Посещение N 1325 c 10.07.2012