| Esseni D. Nanoscale MOS transistors: semi-classical transport and applications / D.Esseni, P.Palestri, L.Selmi. - Cambridge; New York: Cambridge University Press, 2011. - xvii, 470 p.: ill. - Incl. bibl. ref. - Ind.: p.468-470. - ISBN 978-0-521-51684-6
|
Preface ........................................................ xi
Acknowledgements .............................................. xiv
Terminology .................................................... xv
1 Introduction ................................................. 1
1.1 The historical CMOS scaling scenario .................... 1
1.2 The generalized CMOS scaling scenario ................... 5
1.3 Support of modeling to nano-scale MOSFET design ......... 7
1.4 An overview of subsequent chapters ...................... 9
2 Bulk semiconductors and the semi-classical model ............ 19
2.1 Crystalline materials .................................. 19
2.2 Numerical methods for band structure calculations ...... 30
2.3 Analytical band structure models ....................... 37
2.4 Equivalent Hamiltonian and Effective Mass
Approximation .......................................... 41
2.5 The semi-classical model ............................... 45
3 Quantum confined inversion layers ........................... 63
3.1 Electrons in a square well ............................. 64
3.2 Electron inversion layers .............................. 65
3.3 Hole inversion layers .................................. 72
3.4 Full-band energy relation and the LCBB method .......... 81
3.5 Sums and integrals in the к space ...................... 86
3.6 Carrier densities at the equilibrium ................... 94
3.7 Self-consistent calculation of the electrostatic
potential ............................................. 100
3.8 Summary ............................................... 108
4 Carrier scattering in silicon MOS transistors .............. 112
4.1 Theory of the scattering rate calculations ............ 113
4.2 Static screening produced by the free carriers ........ 128
4.3 Scattering with Coulomb centers ....................... 143
4.4 Surface roughness scattering .......................... 156
4.5 Vibrations of the crystal lattice ..................... 169
4.6 Phonon scattering ..................................... 176
4.7 Screening of a time-dependent perturbation
potential ............................................. 196
4.8 Summary ............................................... 201
5 The Boltzmann transport equation ........................... 207
5.1 The BTE for the free-carrier gas ...................... 207
5.2 The BTE in inversion layers ........................... 214
5.3 The BTE for one-dimensional systems ................... 223
5.4 Momentum relaxation time approximation ................ 223
5.5 Models based on the balance equations of the BTE ...... 241
5.6 The ballistic transport regime ........................ 246
5.7 The quasi-ballistic transport regime .................. 256
5.8 Summary ............................................... 263
6 The Monte Carlo method for the Boltzmann transport
equation ................................................... 268
6.1 Basics of the MC method for a free-electron-gas ....... 269
6.2 Coupling with the Poisson equation .................... 291
6.3 The multi-subband Monte Carlo method .................. 301
6.4 Summary ............................................... 306
7 Simulation of bulk and SOI silicon MOSFETs ................. 314
7.1 Low field transport .................................. 314
7.2 Far from equilibrium transport ........................ 328
7.3 Drive current ......................................... 332
7.4 Summary ............................................... 341
8 MOS transistors with arbitrary crystal orientation ......... 348
8.1 Electron inversion layers ............................. 348
8.2 Hole inversion layers ................................. 358
8.3 Simulation results .................................... 359
8.4 Summary ............................................... 364
9 MOS transistors with strained silicon channel .............. 366
9.1 Fabrication techniques for strain engineering ......... 366
9.2 Elastic deformation of a cubic crystal ................ 369
9.3 Band structure in strained n-MOS transistors .......... 382
9.4 Band structure in strained p-MOS transistors .......... 392
9.5 Simulation results for low field mobility ............. 394
9.6 Simulation results for drain current in MOSFETs ....... 398
9.7 Summary ............................................... 399
10 MOS transistors with alternative materials ................. 406
10.1 Alternative gate materials ........................... 406
10.2 Remote phonon scattering due to high-k
dielectrics .......................................... 407
10.3 Scattering due to remote Coulomb centers ............. 423
10.4 Simulation results for MOSFETs with high-k
dielectrics .......................................... 425
10.5 Alternative channel materials ........................ 430
10.6 Germanium MOSFETs .................................... 435
10.7 Gallium arsenide MOSFETs ............................. 440
10.7.1 Conduction band parameters ......................... 440
10.7.2 Phonon scattering .................................. 441
10.7.3 Simulation results ................................. 443
10.8 Summary .............................................. 444
Appendices .................................................... 451
A Mathematical definitions and properties .................... 451
A.l Fourier transform ..................................... 451
A.2 Fourier series ........................................ 453
A.3 Fermi integrals ....................................... 453
В Integrals and transformations over a finite area A ......... 455
С Calculation of the equi-energy lines with the к•p model .... 457
С.1 Three dimensional hole gas ............................ 457
C.2 Two dimensional hole gas ............................... 458
D Matrix elements beyond the envelope function
approximation .............................................. 461
E Charge density produced by a perturbation potential ........ 464
Index ......................................................... 468
|
|