Candy J.V. Bayesian signal processing: classical, modern, and particle filtering methods (Hoboken, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаCandy J.V. Bayesian signal processing: classical, modern, and particle filtering methods. - Hoboken: Wiley: IEEE, 2009. - xxiii, 445 p.: ill., map. - (Adaptive and learning systems for signal processing, communications, and control). - Incl. bibl. ref. - Ind.: p.431-445. - ISBN 978-0-470-18094-5
 

Оглавление / Contents
 
Preface ...................................................... xiii
References to the Preface ..................................... xix
Acknowledgments ............................................. xxiii

1  Introduction ................................................. 1
   1.1  Introduction ............................................ 1
   1.2  Bayesian Signal Processing .............................. 1
   1.3  Simulation-Based Approach to Bayesian Processing ........ 4
   1.4  Bayesian Model-Based Signal Processing .................. 8
   1.5  Notation and Terminology ............................... 12
   References .................................................. 14
   Problems .................................................... 15

2  Bayesian Estimation ......................................... 19
   2.1  Introduction ........................................... 19
   2.2  Batch Bayesian Estimation .............................. 19
   2.3  Batch Maximum Likelihood Estimation .................... 22
        2.3.1  Expectation-Maximization Approach to Maximum
               Likelihood ...................................... 25
        2.3.2  EM for Exponential Family of Distributions ...... 30
   2.4  Batch Minimum Variance Estimation ...................... 33
   2.5  Sequential Bayesian Estimation ......................... 36
        2.5.1  Joint Posterior Estimation ...................... 39
        2.5.2  Filtering Posterior Estimation .................. 41
   2.6  Summary ................................................ 43
   References .................................................. 44
   Problems .................................................... 45

3  Simulation-Based Bayesian Methods ........................... 51
   3.1  Introduction ........................................... 51
   3.2  Probability Density Function Estimation ................ 53
   3.3  Sampling Theory ........................................ 56
        3.3.1  Uniform Sampling Method ......................... 58
        3.3.2  Rejection Sampling Method ....................... 62
   3.4  Monte Carlo Approach ................................... 64
        3.4.1  Markov Chains ................................... 70
        3.4.2  Metropolis-Hastings Sampling .................... 71
        3.4.3  Random Walk Metropolis-Hastings Sampling ........ 73
        3.4.4  Gibbs Sampling .................................. 75
        3.4.5  Slice Sampling .................................. 78
   3.5  Importance Sampling .................................... 81
   3.6  Sequential Importance Sampling ......................... 84
   3.7  Summary ................................................ 87
   References .................................................. 87
   Problems .................................................... 90

4  State-Space Models for Bayesian Processing .................. 95
   4.1  Introduction ........................................... 95
   4.2  Continuous-Time State-Space Models ..................... 96
   4.3  Sampled-Data State-Space Models ....................... 100
   4.4  Discrete-Time State-Space Models ...................... 104
        4.4.1  Discrete Systems Theory ........................ 107
   4.5  Gauss-Markov State-Space Models ....................... 112
        4.5.1  Continuous-Time/Sampled-Data Gauss-Markov
               Models ......................................... 112
        4.5.2  Discrete-Time Gauss-Markov Models .............. 114
   4.6  Innovations Model ..................................... 120
   4.7  State-Space Model Structures .......................... 121
        4.7.1  Time Series Models ............................. 121
        4.7.2  State-Space and Time Series Equivalence
               Models ......................................... 129
   4.8  Nonlinear (Approximate) Gauss-Markov State-Space
        Models ................................................ 135
   4.9  Summary ............................................... 139
   References ................................................. 140
   Problems ................................................... 141

5  Classical Bayesian State-Space Processors .................. 147
   5.1  Introduction .......................................... 147
   5.2  Bayesian Approach to the State-Space .................. 147
   5.3  Linear Bayesian Processor (Linear Kalman Filter) ...... 150
   5.4  Linearized Bayesian Processor (Linearized Kaiman
        Filter) ............................................... 160
   5.5  Extended Bayesian Processor (Extended Kaiman
        Filter) ............................................... 167
   5.6  Iterated-Extended Bayesian Processor (Iterated-
        Extended Kalman Filter) ............................... 174
   5.7  Practical Aspects of Classical Bayesian Processors .... 182
   5.8  Case Study: RLC Circuit Problem ....................... 186
   5.9  Summary ............................................... 191
   References ................................................. 191
   Problems ................................................... 193

6  Modern Bayesian State-Space Processors ..................... 197
   6.1  Introduction .......................................... 197
   6.2  Sigma-Point (Unscented) Transformations ............... 198
        6.2.1  Statistical Linearization ...................... 198
        6.2.2  Sigma-Point Approach ........................... 200
        6.2.3  SPT for Gaussian Prior Distributions ........... 205
   6.3  Sigma-Point Bayesian Processor (Unscented Kaiman
        Filter) ............................................... 209
        6.3.1  Extensions of the Sigma-Point Processor ........ 218
   6.4  Quadrature Bayesian Processors ........................ 218
   6.5  Gaussian Sum (Mixture) Bayesian Processors ............ 220
   6.6  Case Study: 2D-Tracking Problem ....................... 224
   6.7  Summary ............................................... 230
   References ................................................. 231
   Problems ................................................... 233

7  Particle-Based Bayesian State-Space Processors ............. 237
   7.1  Introduction .......................................... 237
   7.2  Bayesian State-Space Particle Filters ................. 237
   7.3  Importance Proposal Distributions ..................... 242
        7.3.1  Minimum Variance Importance Distribution ....... 242
        7.3.2  Transition Prior Importance Distribution ....... 245
   7.4  Resampling ............................................ 246
        7.4.1  Multinomial Resampling ......................... 249
        7.4.2  Systematic Resampling .......................... 251
        7.4.3  Residual Resampling ............................ 251
   7.5  State-Space Particle Filtering Techniques ............. 252
        7.5.1  Bootstrap Particle Filter ...................... 253
        7.5.2  Auxiliary Particle Filter ...................... 261
        7.5.3  Regularized Particle Filter .................... 264
        7.5.4  MCMC Particle Filter ........................... 266
        7.5.5  Linearized Particle Filter ..................... 270
   7.6  Practical Aspects of Particle Filter Design ........... 272
        7.6.1  Posterior Probability Validation ............... 273
        7.6.2  Model Validation Testing ....................... 277
   7.7  Case Study: Population Growth Problem ................. 285
   7.8  Summary ............................................... 289
   References ................................................. 290
   Problems ................................................... 293

8  Joint Bayesian State/Parametric Processors ................. 299
   8.1  Introduction .......................................... 299
   8.2  Bayesian Approach to Joint State/Parameter
        Estimation ............................................ 300
   8.3  Classical/Modern Joint Bayesian State/Parametric
        Processors ............................................ 302
        8.3.1  Classical Joint Bayesian Processor ............. 303
        8.3.2  Modern Joint Bayesian Processor ................ 311
   8.4  Particle-Based Joint Bayesian State/Parametric
        Processors ............................................ 313
   8.5  Case Study: Random Target Tracking Using a Synthetic
        Aperture Towed Array .................................. 318
   8.6  Summary ............................................... 327
   References ................................................. 328
   Problems ................................................... 330

9  Discrete Hidden Markov Model Bayesian Processors ........... 335
   9.1  Introduction .......................................... 335
   9.2  Hidden Markov Models .................................. 335
        9.2.1  Discrete-Time Markov Chains .................... 336
        9.2.2  Hidden Markov Chains ........................... 337
   9.3  Properties of the Hidden Markov Model ................. 339
   9.4  HMM Observation Probability: Evaluation Problem ....... 341
   9.5  State Estimation in HMM: The Viterbi Technique ........ 345
        9.5.1  Individual Hidden State Estimation ............. 345
        9.5.2  Entire Hidden State Sequence Estimation ........ 347
   9.6  Parameter Estimation in HMM: The EM/Baum-Welch
        Technique ............................................. 350
        9.6.1  Parameter Estimation with State Sequence
               Known .......................................... 352
        9.6.2  Parameter Estimation with State Sequence
               Unknown ........................................ 354
   9.7  Case Study: Time-Reversal Decoding .................... 357
   9.8  Summary ............................................... 362
   References ................................................. 363
   Problems ................................................... 365

10 Bayesian Processors for Physics-Based Applications ......... 369
   10.1 Optimal Position Estimation for the Automatic
        Alignment ............................................. 369
        10.1.1 Background ..................................... 369
        10.1.2 Stochastic Modeling of Position Measurements ... 372
        10.1.3 Bayesian Position Estimation and Detection ..... 374
        10.1.4 Application: Beam Line Data .................... 375
        10.1.5 Results: Beam Line (KDP Deviation) Data ........ 377
        10.1.6 Results: Anomaly Detection ..................... 379
   10.2 Broadband Ocean Acoustic Processing ................... 382
        10.2.1 Background ..................................... 382
        10.2.2 Broadband State-Space Ocean Acoustic
               Propagators .................................... 384
        10.2.3 Broadband Bayesian Processing .................. 389
        10.2.4 Broadband BSP Design ........................... 393
        10.2.5 Results ........................................ 395
   10.3 Bayesian Processing for Biothreats .................... 397
        10.3.1 Background ..................................... 397
        10.3.2 Parameter Estimation ........................... 400
        10.3.3 Bayesian Processor Design ...................... 401
        10.3.4 Results ........................................ 403
   10.4 Bayesian Processing for the Detection of Radioactive
        Sources ............................................... 404
        10.4.1 Background ..................................... 404
        10.4.2 Physics-Based Models ........................... 404
        10.4.3 Gamma-Ray Detector Measurements ................ 407
        10.4.4 Bayesian Physics-Based Processor ............... 410
        10.4.5 Physics-Based Bayesian Deconvolution
               Processor ...................................... 412
        10.4.6 Results ........................................ 415
   References ................................................. 417

Appendix A  Probability & Statistics Overview ................. 423
   A.l  Probability Theory .................................... 423
   A.2  Gaussian Random Vectors ............................... 429
   A.3  Uncorrelated Transformation: Gaussian Random
        Vectors ............................................... 430

References .................................................... 430
Index ......................................................... 431


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:18 2019 Размер: 16,568 bytes.
Посещение N 1647 c 03.04.2012