Porous media: applications in biological systems and biotechnology (Boca Raton; London, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPorous media: applications in biological systems and biotechnology / ed. by K.Vafai. - Boca Raton: CRC; London: Taylor & Francis, 2011. - xxxii, 599 p.: ill. - Incl. bibl. ref. - Ind.: p.569-599. - ISBN 978-1-4200-6541-1
 

Место хранения: 040 | Институт биофизики СО РАН | Красноярск | Библиотека

Оглавление / Contents
 
Preface ...................................................... xvii
Editor ...................................................... xxvii
List of Contributors ......................................... xxix
1  A General Set of Bioheat Transfer Equations Based on
   the Volume Averaging Theory .................................. 1
   Akira Nakayama, Fujio Kuwahara, and Wei Liu
   1.1  Introduction ............................................ 2
   1.2  Volume Averaging Procedure .............................. 4
   1.3  Governing Equation for Blood Flow ....................... 7
   1.4  Two-Energy Equation Model for Blood Flow and Tissue ..... 8
        1.4.1  Related Work ..................................... 8
        1.4.2  Two-Energy Equation Model Based on VAT ........... 9
        1.4.3  Pennes Model .................................... 12
        1.4.4  Wulff Model and Klinger Model ................... 13
        1.4.5  Chen and Holmes Model ........................... 14
   1.5  Three-Energy Equation Model for Countercurrent Heat
        Transfer in a Circulatory System ....................... 15
        1.5.1  Related Work .................................... 15
        1.5.2  Three-Energy Equation Model Based on the
               Volume Averaging Theory ......................... 16
        1.5.3  Keller and Seiler Model ......................... 19
        1.5.4  Chato Model ..................................... 20
        1.5.5  Roetzel and Xuan Model .......................... 20
        1.5.6  Weinbaum-Jiji Model and Bejan Model ............. 21
   1.6  Effect of Spatial Distribution of Perfusion Bleed-Off
        Rate on Total Countercurrent Heat Transfer ............. 23
   1.7  Application of Bioheat Equation to Cryoablation
        Therapy ................................................ 26
        1.7.1  Related Work .................................... 26
        1.7.2  Bioheat Equation for Cryoablation ............... 29
        1.7.3  Numerical Analysis Based on Enthalpy Method ..... 30
        1.7.4  Analytical Treatment Based on Integral
               Method .......................................... 32
        1.7.5  Limiting Radius for Freezing a Tumor during
               Cryoablation .................................... 36
   1.8  Conclusions ............................................ 38
   1.9  Nomenclature ........................................... 39
   1.10 References ............................................. 41
2  Mathematical Models of Mass Transfer in Tissue for
   Molecular Medicine with Reversible Electroporation .......... 45
   Yair Granot and Boris Rubinsky
   2.1  Introduction ........................................... 45
   2.2  Fundamental Aspects of Reversible Electroporation ...... 48
   2.3  Mathematical Models of Ion Transport during
        Electroporation ........................................ 51
   2.4  Electrical Impedance Tomography of in vivo
        Electroporation ........................................ 53
   2.5  Mass Transfer in Tissue with Reversible
        Electroporation ........................................ 58
   2.6  Studies on Molecular Medicine with Drug Delivery in
        Tissue by Electroporation .............................. 64
   2.7  Future Research Needs in Mathematical Modeling of the
        Field of Electroporation ............................... 68
   2.8  References ............................................. 69
3  Hydrodynamics in Porous Media with Applications to Tissue
   Engineering ................................................. 75
   C. Oddou, T. Lemaire, J. Pierre, and B. David
   3.1  Nomenclature ........................................... 76
   3.2  Introduction ........................................... 78
   3.3  Cell and Tissue Engineering: Physicochemical
        Determinants of the Development ........................ 80
        3.3.1  Cell Metabolism—Nutrient and Oxygen
               Consumption: The Michaelis-Menten Formulation ... 80
        3.3.2  Effects of Nutrient Transport ................... 83
        3.3.3  Effects of Mechanical Loading: Cell and Tissue
               Mechanobiology .................................. 84
        3.3.4  Other Physicochemical Factors Affecting Cell
               Metabolism ...................................... 86
   3.4  Bioreactors and Implants ............................... 88
        3.4.1  Different Types of Bioreactors .................. 89
        3.4.2  Microarchitectural Design of Substrates ......... 91
   3.5  Theoretical Models of Active Porous Media .............. 95
        3.5.1  Length and Time Scales of the Different
               Physicochemical Phenomena ....................... 95
        3.5.2  Convection-Diffusion-Reaction Phenomena: Basic
               Equations and Characteristic Nondimensional
               Parameters ...................................... 95
        3.5.3  Computational Models: Two Examples of
               Model-Driven Experimental Approaches ........... 100
               3.5.3.1  Modeling of Transport Processes in
                        Bone Tissue-Engineered Implants ....... 100
               3.5.3.2  Microfluidic Bioreactor: A Numerical
                        Driven Experiment for Cartilage
                        Culture ............................... 105
   3.6  Conclusion ............................................ 109
   3.7  References ............................................ 11l
4  Biomedical Implications of the Porosity of Microbial
   Biofilms ................................................... 121
   H. Ben-Yoav, N. Cohen-Hadar, and Amihay Freeman
   4.1  Introduction .......................................... 122
        4.1.1  What Is a Biofilm? ............................. 122
        4.1.2  Biofilms in Medicine ........................... 124
   4.2  The Life Cycle of Biofilms ............................ 125
        4.2.1  Microbial Attachment ........................... 125
               4.2.1.1  Substratum Effects .................... 126
               4.2.1.2  Conditioning Films .................... 126
               4.2.1.3  Hydrodynamics ......................... 127
               4.2.1.4  Characteristics of the Contacting
                        Aqueous Medium ........................ 127
               4.2.1.5  Cell Properties ....................... 127
        4.2.2  Biofilm Growth ................................. 128
               4.2.2.1  Quorum Sensing ........................ 128
        4.2.3  Detachment ..................................... 129
   4.3  Infectious Microbial Biofilms—Structural and
        Biological Characteristics ............................ 130
        4.3.1  Bacterial Biofilms ............................. 130
               4.3.1.1  Biofilms Composed of Gram-Negative
                        Bacteria .............................. 130
               4.3.1.2  Biofilms Composed of Gram-Positive
                        Bacteria .............................. 131
        4.3.2  Fungal Biofilms ................................ 132
        4.3.3  Microbial Interactions in Mixed-Species
               Biofilms ....................................... 133
        4.3.4  Antimicrobial Resistance in Infectious
               Bacterial Biofilms ............................. 134
        4.3.5  Porosity and Diffusional Limitations in
               Biofilms ....................................... 137
   4.4  Infectious Microbial Biofilms—Treatment Modalities
        and Resistance ........................................ 142
        4.4.1  Antibacterial and Antifungal Treatment
               Modalities of Infectious Biofilms .............. 142
        4.4.2  The Impact of Porosity and Diffusional
               Limitations on Treatment Efficacy .............. 145
   4.5  Concluding Remarks .................................... 149
   4.6  References ............................................ 150
5  Influence of Biofilms on Porous Media Hydrodynamics ........ 173
   Robin Gerlach and Alfred B. Cunningham
   5.1  Introduction and Overview ............................. 174
   5.2  An Introduction to Biofilms ........................... 174
        5.2.1  Microbial Transport and Attachment ............. 176
        5.2.2  Biofilm Growth ................................. 177
        5.2.3  Microbial Detachment and Propagation ........... 180
   5.3  Experimental Systems and Techniques for the
        Investigation of Biofilms in Porous Media ............. 181
        5.3.1  The Challenge of Imaging Biofilms in
               Porous Media ................................... 182
        5.3.2  Porous Media Biofilm Reactors .................. 183
   5.4  Biofilms in Porous Media and Their Effect on
        Hydrodynamics ......................................... 186
        5.4.1  The Relationship of Porous Media
               Hydrodynamics and Biofilm Structure ............ 186
        5.4.2  Porosity ....................................... 189
        5.4.3  Permeability ................................... 190
        5.4.4  Dispersion and Diffusion ....................... 197
        5.4.5  Constant Head versus Constant Flow ............. 198
   5.5  A Few Notes on Modeling ............................... 202
        5.5.1  Macroscopic versus Microscopic Models .......... 202
        5.5.2  Mixed Domain (Hybrid) Models ................... 203
   5.6  Porous Media Biofilms in Nature and Technology ........ 203
        5.6.1  Subsurface Biofilm Barriers for the Control
               and Remediation of Contaminated Groundwater .... 205
        5.6.2  Deep Subsurface Biofilms for Enhanced Oil
               Recovery and Carbon Sequestration .............. 208
        5.6.3  Porous Media Biofilm Reactors in Industry and
               Waste Treatment ................................ 209
   5.7  Conclusions and Outlook ............................... 210
   5.8  References ............................................ 211
6  Using Porous Media Theory to Determine the Coil Volume
   Needed to Arrest Flow in Brain Aneurysms ................... 231
   Khalil M. Khanafer and Ramon Berguer
   6.1  Nomenclature .......................................... 231
   6.2  Introduction .......................................... 232
   6.3  Physics of Cerebral Aneurysms ......................... 232
   6.4  Background
        6.4.1  Clinical and Experimental Studies Associated
               with the Treatment of Aneurysms Using Stent .... 234
               Implantation and Coil Placement ................ 234
        6.4.2  Computational Studies Associated with
               Combined Use of Stents and Coils for the
               Treatment of Cerebral Aneurysms ................ 235
   6.5  Mathematical Formulations ............................. 237
   6.6  Construction of Brain Aneurysm Meshes from CT Scans ... 239
   6.7  Results and Discussion ................................ 240
   6.8  Minimum Packing Density of the Endovascular Coil ...... 242
   6.9  Future Work ........................................... 244
   6.10 Constructions ......................................... 245
   6.11 References ............................................ 245
7  Lagrangian Particle Methods for Biological Systems ......... 251
   Alexandre M. Tartakovsky, Zhijie Xu, and Paul Meakin
   7.1  Introduction .......................................... 252
   7.2  DPD Models for Biological Applications ................ 254
   7.3  SPHs Models for Biofilm Growth ........................ 265
        7.3.1  Model 1 ........................................ 267
        7.3.2  Model 2 ........................................ 268
        7.3.3  Implementation of the SPH Model ................ 269
        7.3.4  Numerical Results .............................. 269
   7.4  An SPH Model for Mineral Precipitation ................ 271
   7.5  Hybrid Models for Diffusion-Reaction Systems .......... 274
        7.5.1  Hybrid Formulation for Reaction-Diffusion
               Systems in Porous Media ........................ 275
        7.5.2  Pore-Scale Description and Its SPH
               Formulation .................................... 276
        7.5.3  SPH Representation of the Pore-Scale RDEs ...... 277
        7.5.4  Darcy-Scale (Continuum) Description ............ 278
        7.5.5  SPH Representation of Averaged Darcy-Scale
               RDEs ........................................... 279
        7.5.6  Hybrid Formulation ............................. 280
        7.5.7  Numerical Implementation of the Hybrid
               Algorithm ...................................... 280
        7.5.8  Coupling of the Pore-Scale and Darcy-Scale
               Simulations .................................... 280
        7.5.9  Multiresolution Implementation of the Hybrid
               Algorithm ...................................... 281
        7.5.10 Time Integration ............................... 282
        7.5.11 Numerical Example .............................. 282
        7.5.12 Pore-Scale SPH Simulations ..................... 282
        7.5.13 Hybrid Simulations ............................. 284
   7.6  Summary ............................................... 285
   7.7  References ............................................ 286
8  Passive Mass Transport Processes in Cellular Membranes
   and their Biophysical Implications ......................... 295
   Armin Kargol and Marian Kargol
   8.1  Introduction .......................................... 296
   8.2  Thermodynamic KK Equations ............................ 297
        8.2.1  Derivation of Phenomenological KK Equations .... 298
        8.2.2  Practical KK Equations ......................... 301
        8.2.3  Transport Parameters Lp, σ, and ω .............. 302
   8.3  Porous Membranes ...................................... 303
        8.3.1  Homogeneous and Inhomogeneous Porous
               Membranes ...................................... 304
        8.3.2  Poiseuille's Equation for Individual Pores
               and for the Membrane ........................... 305
   8.4  Mechanistic Equations of Membrane Transport ........... 306
        8.4.1  Equation for the Volume Flux ................... 307
        8.4.2  Equation for the Solute Flux ................... 308
               8.4.2.1  Case 1 ................................ 309
               8.4.2.2  Case 2 ................................ 309
        8.4.3  Correlation Relation for Parameters Lp, σ,
               and ωd ......................................... 310
        8.4.4  2P Form of the Mechanistic Equations ........... 311
        8.4.5  Corrected Form of the Mechanistic Transport
               Equations ...................................... 311
        8.4.6  Equivalence of KK and ME Equations ............. 312
   8.5  Water Exchange between Aquatic Plants and the
        Environment ........................................... 314
        8.5.1  KK Equations Applied to Water Exchange by
               Aquatic Plants ................................. 314
        8.5.2  Water Exchange Described by Mechanistic
               Equations ...................................... 315
        8.5.3  Numerical Results for Nitella translucens and
               Chara Corallina ................................ 317
   8.6  Passive Transport through Cell Membranes of Human
        Erythrocytes .......................................... 317
        8.6.1  Regulation of Water Exchange between
               Erythrocytes and Blood Plasma .................. 319
        8.6.2  Distribution of Pore Sizes ..................... 320
   8.7  Comparison of Transport Formalisms: KK, ME, and 2P .... 324
   8.8  References ............................................ 327
9  Skin Electroporation: Modeling Perspectives ................ 331
   S.M. Becker and A.V. Kuznetsov
   9.1  Introduction .......................................... 332
   9.2  Transdermal Drug Delivery ............................. 332
   9.3  The Skin as a Composite ............................... 333
   9.4  Stratum Corneum and the Lipid Barrier ................. 334
   9.5  Nondestructive Transport Modeling: The SC as
        a Porous Medium ....................................... 334
        9.5.1  Brick and Mortar Models ........................ 335
        9.5.2  Models Based on Lipid Microstructure: Free
               Volume Diffusion ............................... 338
        9.5.3  Aqueous Pore-Membrane Models ................... 339
   9.6  Skin Electroporation .................................. 342
        9.6.1  Short Pulse (Nonthermal) ....................... 342
        9.6.2  Long Pulse (Thermal) ........................... 344
        9.6.3  LTR: Experimental Observation .................. 345
        9.6.4  Lipid Thermal Phase Transitions ................ 346
   9.7  Skin Electroporation Models (Nonthermal) .............. 348
        9.7.1  Single Bilayer Electroporation Modeling ........ 348
        9.7.2  Empirical Models ............................... 350
   9.8  Thermodynamic Approach ................................ 353
        9.8.1  Fully Thermodynamic Approach ................... 354
        9.8.2  LTR Lipid Thermal Phase Change ................. 354
        9.8.3  Transport ...................................... 356
        9.8.4  Thermal Energy ................................. 357
   9.9  Conclusions ........................................... 359
   9.10 References ............................................ 359
10 Application of Porous Media Theories in Marine Biological
   Modeling ................................................... 365
   Arzhang Khalili, Bo Liu, Khodayar Javadi, Mohammad R.
   Morad, Kolja Kindler, Maciej Matyka, Roman Stocker, and
   Zbigniew Koza
   10.1 Introduction .......................................... 366
   10.2 Description of the Mathematical Model ................. 368
        10.2.1 BGK Model ...................................... 368
        10.2.2 LBM for Incompressible Flows in Porous Media ... 370
        10.2.3 LBM for Concentration Release in Porous
               Media .......................................... 371
   10.3  Application of Porous Media in Marine Microbiology ... 372
        10.3.1 Shear-Stress Control at Bottom Sediment ........ 372
        10.3.2 Tortuosity of Marine Sediments ................. 375
        10.3.3 Oscillating Flows over a Permeable Rippled
               Seabed ......................................... 377
        10.3.4 Nutrient Release from Sinking Marine
               Aggregates ..................................... 380
        10.3.5 Enhanced Nutrient Exchange by Burrowing
               Macrozoobenthos Species ........................ 387
   10.4 Future Prospectives ................................... 391
   10.5 References ............................................ 391
11 The Transport of Insulin-Like Growth Factor through
   Cartilage .................................................. 399
   Lihai Zhang, Bruce S. Gardiner, David W. Smith, Peter
   Pivonka, and Alan J. Grodzinsky
   11.1 Overview .............................................. 400
   11.2 Basic Solute Transport Model in a Deforming
        Articular Cartilage ................................... 404
        11.2.1 Introduction ................................... 404
               11.2.1.1 Modeling Cartilage Using the Theory
                        of Porous Media ....................... 404
        11.2.2 Basic Solute Transport Model in Cyclically
               Loaded Cartilage ............................... 405
               11.2.2.1 Conservation of Mass .................. 406
               11.2.2.2 Conservation of Linear Momentum ....... 407
               11.2.2.3 Model Geometry for Radial Solute
                        Transport in Cartilage under
                        Unconfined Cyclic Compression ......... 409
               11.2.2.4 Boundary Conditions ................... 411
               11.2.2.5 Initial Conditions .................... 411
               11.2.2.6 Numerical Method ...................... 411
   11.3 The Effect of Cyclic Loading and IGF-I Binding on
        IGF-I Transport in Cartilage .......................... 412
        11.3.1 Introduction ................................... 412
               11.3.1.1 The Effect of IGF Binding on IGF
                        Transport in Cartilage ................ 415
        11.3.2 Interaction between IGF-I and Its IGFBPs ....... 416
               11.3.2.1 Law of Mass Action .................... 416
               11.3.2.2 Model of Solute Transport and
                        Binding in a Deformable Cartilage ..... 417
               11.3.2.3 Boundary and Initial Conditions ....... 419
        11.3.3 Results and Discussion ......................... 419
               11.3.3.1 Free Diffusion ........................ 419
               11.3.3.2 Diffusion with Cyclic Deformation
                        and IGF-I, IGFBP Interaction .......... 420
   11.4 IGF Transport with Competitive Binding in
        a Deforming Articular Cartilage ....................... 423
        11.4.1 Introduction ................................... 423
               11.4.1.1 Competitive Binding of IGFs to
                        Their IGFBPs in Cartilage ............. 424
        11.4.2 Model Development for a Competitor Growth
               Factor ......................................... 425
               11.4.2.1 Law of Mass Action with Competitive
                        Binding ............................... 426
               11.4.2.2 Steady-State Growth Factor Uptake ..... 427
               11.4.2.3 Model Calibration ..................... 427
               11.4.2.4 Competitive Binding in a Deforming
                        Cartilage ............................. 429
               11.4.2.5 Radial IGF-I and -II Transport in
                        Cartilage under Unconfined Dynamic
                        Compression ........................... 430
               11.4.2.6 Free Diffusion with Competitor ........ 431
               11.4.2.7 Growth Factor Transport with
                        Competitor and Cyclic Deformation ..... 431
   11.5 An Integrated Model of IGF-I and Mechanical-Loading-
        Mediated Biosynthesis in a Deformed Articular
        Cartilage ............................................. 434
        11.5.1 Introduction ................................... 434
               11.5.1.1 IGF-I and Mechanical-Loading-
                        Mediated Cartilage Biosynthesis ....... 435
        11.5.2 Biosynthesis Model Construction ................ 435
               11.5.2.1 IGF-I Transport and Interaction with
                        IGFBPs and Receptors .................. 436
               11.5.2.2 Cartilage ECM Biosynthesis ............ 437
               11.5.2.3 IGF-I Mediated Aggrecan
                        Biosynthesis .......................... 437
               11.5.2.4 Mechanical-Stimuli-Mediated Aggrecan
                        Biosynthesis .......................... 438
               11.5.2.5 Aggrecan Molecule Transport in
                        Cartilage ............................. 439
        11.5.3 Biosynthesis Model Validation and
               Predictions .................................... 440
   11.6 Summary ............................................... 444
   11.7 References ............................................ 445
12 Biotechnological and Biomedical Applications of
   Magnetically Stabilized and Fluidized Beds ................. 455
   Teresa Castelo-Grande, Paulo A. Augusto, Angel
   M. Estevéz, Domingos Barbosa, Jesus Ma. Rodríguez, and
   Audelino Álvaro
   12 A  Introduction ......................................... 456
   12.2 Historical Overview of Magnetically Stabilized and
        Fluidized Beds ........................................ 458
        12.2.1 General ........................................ 458
        12.2.2 Biotechnology and Biomedicine .................. 459
   12.3 MSBs and MFBs ......................................... 460
        12.3.1 Principles of MSBs and MFBs .................... 460
        12.3.2 MSBs and MFBs as Porous Media .................. 463
   12.4 General Supporting Theory ............................. 464
        12.4.1  MSBs and MFBs ................................. 464
                12.4.1.1 Magnetic Forces ...................... 464
                12.4.1.2 Van der Waals Forces ................. 465
                12.4.1.3 Electrostatic Forces ................. 465
                12.4.1.4 Collisional Forces ................... 465
                12.4.1.5 Force Balances and Parameters
                         Computation .......................... 466
        12.4.2  Extra Forces or Equations Usually Required
                When MSFBs Are Applied in Biotechnology and
                Medicine ...................................... 469
   12.5 Main Biotechnological and Biomedical Applications ..... 471
        12.5.1 Particles (Beads) .............................. 471
        12.5.2 Applications ................................... 472
               12.5.2.1 Enzyme or Cell Immobilization/
                        Bioreactions .......................... 472
               12.5.2.2 Protein Purification/Adsorption ....... 473
               12.5.2.3 MSFB Chromatography ................... 474
               12.5.2.4 Novel Separations ..................... 475
   12.6 Conclusion and Future Perspectives .................... 477
   12.7 References ............................................ 478
13 In Situ Characterizations of Porous Media for
   Applications in Biofuel Cells: Issues and Challenges ....... 489
   Bor Yann Liaw
   13.1 Introduction .......................................... 489
   13.2 Biofuel Cell Applications ............................. 491
   13.3 Desirable Properties and Functionalities .............. 497
   13.4 Needs for in situ Characterization: Issues and
        Challenges ............................................ 499
   13.5 Applicable in situ Techniques ......................... 499
        13.5.1 Spectroscopic Imaging Ellipsometry ............. 499
        13.5.2 Quartz Crystal Microbalance .................... 509
        13.5.3 X-Ray Spectroscopic Techniques ................. 515
        13.5.4 Other Spectroscopic Techniques ................. 518
   13.6 Future Directions ..................................... 520
   13.7 References ............................................ 521
14 Spatial Pattern Formation of Motile Microorganisms:
   From Gravitactic Bioconvection to Protozoan Culture
   Dynamics ................................................... 535
   Tri Nguyen-Quang, Frederic Guichard, and The Hung Nguyen
   14.1 Description and Literature Review of Bioconvection .... 536
        14.1.1 Overview ....................................... 536
        14.1.2 Review of Literature ........................... 538
   14.2 Onset and Evolution of Gravitactic Bioconvection:
        Linear Stability Analysis and Numerical Simulation .... 541
        14.2.1 Mathematical Formulation of Gravitactic
               Bioconvection in a Porous Medium ............... 541
               14.2.1.1 Description and Formulation of the
                        Problem ............................... 541
               14.2.1.2 Initial and Boundary Conditions ....... 543
        14.2.2 Diffusion State ................................ 543
               14.2.2.1 Nondimensional Equations .............. 544
               14.2.2.2 Linearized Equations .................. 545
        14.2.3 Numerical Results .............................. 546
               14.2.3.1 Linear Stability Analysis ............. 546
               14.2.3.2 Evolution of Bioconvection ............ 548
                        14.2.3.2.1 Critical Threshold and
                                   Subcritical Regime ......... 548
                        14.2.3.2.2 Supercritical State ........ 549
   14.3 Experimental Study of the Pattern Formation in a
        Suspension of Gravitactic Microorganisms .............. 551
        14.3.1 Introduction ................................... 551
        14.3.2 Hele-Shaw Apparatus and Darcy's Law ............ 553
        14.3.3 Geometrical and Physicobiological Parameters ... 553
        14.3.4 Key Results of Experimental Study .............. 555
               14.3.4.1 The Diffusion Regime .................. 555
               14.3.4.2 The Stationary Convection Regime ...... 556
               14.3.4.3 Unsteady Convection Regime ............ 556
               14.3.4.4 Critical Threshold for the
                        Transition ............................ 557
   14.4 Summary and Perspectives of Future Research ........... 559
   14.5 Appendix: Boussinesq Approximation for the
        Microorganism Suspension .............................. 560
   14.6 Nomenclature .......................................... 561
   14.7 References ............................................ 562

Index ......................................................... 569


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:16 2019 Размер: 33,744 bytes.
Посещение N 1810 c 27.03.2012