Optimization techniques for solving complex problems (Hoboken, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаOptimization techniques for solving complex problems / ed. by E.Alba et. al. - Hoboken: Wiley, 2009. - xxi, 476 p.: ill., charts. - (Wiley series on parallel and distributed computing). - Incl. bibl. ref. - Ind.: p.473-476. - ISSN 978-0-470-29332-4
 

Оглавление / Contents
 
CONTRIBUTORS ................................................... xv
FOREWORD ...................................................... xix
PREFACE ....................................................... xxi

PART I  METHODOLOGIES FOR COMPLEX PROBLEM SOLVING ............... 1

1  Generating Automatic Projections by Means of Genetic
   Programming .................................................. 3
   C. Estébanez and R. Aler
   1.1  Introduction ............................................ 3
   1.2  Background .............................................. 4
   1.3  Domains ................................................. 6
   1.4  Algorithmic Proposal .................................... 6
   1.5  Experimental Analysis ................................... 9
   1.6  Conclusions ............................................ 11
   References .................................................. 13
2  Neural Lazy Local Learning .................................. 15
   J.M. Valls, I.M. Galván, and P. Isasi
   2.1  Introduction ........................................... 15
   2.2  Lazy Radial Basis Neural Networks ...................... 17
   2.3  Experimental Analysis .................................. 22
   2.4  Conclusions ............................................ 28
   References .................................................. 30
3  Optimization Using Genetic Algorithms with
   Micropopulations ............................................ 31
   Y. Sáez
   3.1  Introduction ........................................... 31
   3.2  Algorithmic Proposal ................................... 33
   3.3  Experimental Analysis: The Rastrigin Function .......... 40
   3.4  Conclusions ............................................ 44
   References .................................................. 45
4  Analyzing Parallel Cellular Genetic Algorithms .............. 49
   G. Luque, E. Alba, and B. Dorronsoro
   4.1  Introduction ........................................... 49
   4.2  Cellular Genetic Algorithms ............................ 50
   4.3  Parallel Models for cGAs ............................... 51
   4.4  Brief Survey of Parallel cGAs .......................... 52
   4.5  Experimental Analysis .................................. 55
   4.6  Conclusions ............................................ 59
   References .................................................. 59
5  Evaluating New Advanced Multiobjective Metaheuristics ....... 63
   A.J. Nebro, J.J. Durillo, F. Luna, and E. Alba
   5.1  Introduction ........................................... 63
   5.2  Background ............................................. 65
   5.3  Description of the Metaheuristics ...................... 67
   5.4  Experimental Methodology ............................... 69
   5.5  Experimental Analysis .................................. 72
   5.6  Conclusions ............................................ 79
   References .................................................. 80
6  Canonical Metaheuristics for Dynamic Optimization
   Problems .................................................... 83
   G. Leguizamón, G. Ordóñez, S. Molina, and E. Alba
   6.1  Introduction ........................................... 83
   6.2  Dynamic Optimization Problems .......................... 84
   6.3  Canonical MHs for DOPs ................................. 88
   6.4  Benchmarks ............................................. 92
   6.5  Metrics ................................................ 93
   6.6  Conclusions ............................................ 95
   References .................................................. 96
7  Solving Constrained Optimization Problems with Hybrid
   Evolutionary Algorithms .................................... 101
   C. Cotta and A.J. Fernández
   7.1  Introduction .......................................... 101
   7.2  Strategies for Solving CCOPs with HEAs ................ 103
   7.3  Study Cases ........................................... 105
   7.4  Conclusions ........................................... 114
   References ................................................. 115
8  Optimization of Time Series Using Parallel, Adaptive,
   and Neural Techniques ...................................... 123
   J.A. Gómez, M.D. Jaraiz, M.A. Vega, and J.M. Sánchez
   8.1  Introduction .......................................... 123
   8.2  Time Series Identification ............................ 124
   8.3  Optimization Problem .................................. 125
   8.4  Algorithmic Proposal .................................. 130
   8.5  Experimental Analysis ................................. 132
   8.6  Conclusions ........................................... 136
   References ................................................. 136
9  Using Reconfigurable Computing for the Optimization
   of Cryptographic Algorithms ................................ 139
   J.M. Granado, M.A. Vega, J.M. Sánchez, and J.A. Gómez
   9.1  Introduction .......................................... 139
   9.2  Description of the Cryptographic Algorithms ........... 140
   9.3  Implementation Proposal ............................... 144
   9.4  Experimental Analysis ................................. 153
   9.5  Conclusions ........................................... 154
   References ................................................. 155
10 Genetic Algorithms, Parallelism, and Reconfigurable
   Hardware ................................................... 159
   J.M. Sánchez, M. Rubio, M.A. Vega, and J.A. Gómez
   10.1 Introduction .......................................... 159
   10.2 State of the Art ...................................... 161
   10.3 FPGA Problem Description and Solution ................. 162
   10.4 Algorithmic Proposal .................................. 169
   10.5 Experimental Analysis ................................. 172
   10.6 Conclusions ........................................... 177
   References ................................................. 177
11 Divide and Conquer: Advanced Techniques .................... 179
   С. León, G. Miranda, and C. Rodríguez
   11.1 Introduction .......................................... 179
   11.2 Algorithm of the Skeleton ............................. 180
   11.3 Experimental Analysis ................................. 185
   11.4 Conclusions ........................................... 189
   References ................................................. 190
12 Tools for Tree Searches: Branch-and-Bound and A*
   Algorithms ................................................. 193
   C. León, G. Miranda, and C. Rodríguez
   12.1 Introduction .......................................... 193
   12.2 Background ............................................ 195
   12.3 Algorithmic Skeleton for Tree Searches ................ 196
   12.4 Experimentation Methodology ........................... 199
   12.5 Experimental Results .................................. 202
   12.6 Conclusions ........................................... 205
   References ................................................. 206
13 Tools for Tree Searches: Dynamic Programming ............... 209
   C. León, G. Miranda, and C. Rodríguez
   13.1 Introduction .......................................... 209
   13.2 Тор-Down Approach ..................................... 210
   13.3 Bottom-Up Approach .................................... 212
   13.4 Automata Theory and Dynamic Programming ............... 215
   13.5 Parallel Algorithms ................................... 223
   13.6 Dynamic Programming Heuristics ........................ 225
   13.7 Conclusions ........................................... 228
   References ................................................. 229

PART II APPLICATIONS .......................................... 231

14 Automatic Search of Behavior Strategies in Auctions ........ 233
   D. Quintana and A. Mochón
   14.1 Introduction .......................................... 233
   14.2 Evolutionary Techniques in Auctions ................... 234
   14.3 Theoretical Framework: The Ausubel Auction ............ 238
   14.4 Algorithmic Proposal .................................. 241
   14.5 Experimental Analysis ................................. 243
   14.6 Conclusions ........................................... 246
   References ................................................. 247
15 Evolving Rules for Local Time Series Prediction ............ 249
   C. Luque, J.M. Valls, and P. Isasi
   15.1 Introduction .......................................... 249
   15.2 Evolutionary Algorithms for Generating Prediction
        Rules ................................................. 250
   15.3 Experimental Methodology .............................. 250
   15.4 Experiments ........................................... 256
   15.5 Conclusions ........................................... 262
   References ................................................. 263
16 Metaheuristics in Bioinformatics: DNA Sequencing
   and Reconstruction ......................................... 265
   C. Cotta, A.J. Fernández, J-E. Gallardo, G. Luque, and
   E. Alba
   16.1 Introduction .......................................... 265
   16.2 Metaheuristics and Bioinformatics ..................... 266
   16.3 DNA Fragment Assembly Problem ......................... 270
   16.4 Shortest Common Supersequence Problem ................. 278
   16.5 Conclusions ........................................... 282
   References ................................................. 283
17 Optimal Location of Antennas in Telecommunication
   Networks ................................................... 287
   G. Molina, F. Chicano, and E. Alba
   17.1 Introduction .......................................... 287
   17.2 State of the Art ...................................... 288
   17.3 Radio Network Design Problem .......................... 292
   17.4 Optimization Algorithms ............................... 294
   17.5 Basic Problems ........................................ 297
   17.6 Advanced Problem ...................................... 303
   17.7 Conclusions ........................................... 305
   References ................................................. 306
18 Optimization of Image-Processing Algorithms Using FPGAs .... 309
   M.A. Vega, A. Gómez, J.A. Gómez, and J.M. Sánchez
   18.1 Introduction .......................................... 309
   18.2 Background ............................................ 310
   18.3 Main Features of FPGA-Based Image Processing .......... 311
   18.4 Advanced Details ...................................... 312
   18.5 Experimental Analysis: Software Versus FPGA ........... 321
   18.6 Conclusions ........................................... 322
   References ................................................. 323
19 Application of Cellular Automata Algorithms to the
   Parallel Simulation of Laser Dynamics ...................... 325
   J.L. Guisado, F. Jiménez-Morales, J.M. Guerra, and
   F. Fernández
   19.1 Introduction .......................................... 325
   19.2 Background ............................................ 326
   19.3 Laser Dynamics Problem ................................ 328
   19.4 Algorithmic Proposal .................................. 329
   19.5 Experimental Analysis ................................. 331
   19.6 Parallel Implementation of the Algorithm .............. 336
   19.7 Conclusions ........................................... 344
   References ................................................. 344
20 Dense Stereo Disparity from an Artificial Life
   Standpoint ................................................. 347
   G. Olague, F. Fernández, C.B. Pérez, and E. Lutton
   20.1 Introduction .......................................... 347
   20.2 Infection Algorithm with an Evolutionary Approach ..... 351
   20.3 Experimental Analysis ................................. 360
   20.4 Conclusions ........................................... 363
   References ................................................. 363
21 Exact, Metaheuristic, and Hybrid Approaches to
   Multidimensional Knapsack Problems ......................... 365
   J.E. Gallardo, C. Cotta, and A.J. Fernández
   21.1 Introduction .......................................... 380
   21.2 Multidimensional Knapsack Problem ..................... 370
   21.3 Hybrid Models ......................................... 372
   21.4 Experimental Analysis ................................. 377
   21.5 Conclusions ........................................... 379
   References
22 Greedy Seeding and Problem-Specific Operators for GAs
   Solution of Strip Packing Problems ......................... 385
   C. Salto, J.M. Molina, and E. Alba
   22.1 Introduction .......................................... 385
   22.2 Background ............................................ 386
   22.3 Hybrid GA for the 2SPP ................................ 387
   22.4 Genetic Operators for Solving the 2SPP ................ 388
   22.5 Initial Seeding ....................................... 390
   22.6 Implementation of the Algorithms ...................... 391
   22.7 Experimental Analysis ................................. 392
   22.8 Conclusions ........................................... 403
   References ................................................. 404
23 Solving the KCT Problem: Large-Scale Neighborhood Search
   and Solution Merging ....................................... 407
   C. Blum and M.J. Blesa
   23.1 Introduction .......................................... 407
   23.2 Hybrid Algorithms for the KCT Problem ................. 409
   23.3 Experimental Analysis ................................. 415
   23.4 Conclusions ........................................... 416
   References ................................................. 419
24 Experimental Study of GA-Based Schedulers in Dynamic
   Distributed Computing Environments ......................... 423
   F. Xhafa and J. Carretero
   24.1 Introduction .......................................... 423
   24.2 Related Work .......................................... 425
   24.3 Independent Job Scheduling Problem .................... 426
   24.4 Genetic Algorithms for Scheduling in Grid Systems ..... 428
   24.5 Grid Simulator ........................................ 429
   24.6 Interface for Using a GA-Based Scheduler with the
        Grid Simulator ........................................ 432
   24.7 Experimental Analysis ................................. 433
   24.8 Conclusions ........................................... 438
   References ................................................. 439
25 Remote Optimization Service ................................ 443
   J. García-Nieto, F. Chicano, and E. Alba
   25.1 Introduction .......................................... 443
   25.2 Background and State of the Art ....................... 444
   25.3 ROS Architecture ...................................... 446
   25.4 Information Exchange in ROS ........................... 448
   25.5 XML in ROS ............................................ 449
   25.6 Wrappers .............................................. 450
   25.7 Evaluation of ROS ..................................... 451
   25.8 Conclusions ........................................... 454
   References ................................................. 455
26 Remote Services for Advanced Problem Optimization .......... 457
   J.A. Gómez, M.A. Vega, J.M. Sánchez, J.L. Guisado,
   D. Lombraña, and F. Fernández
   26.1 Introduction .......................................... 457
   26.2 SIRVA ................................................. 458
   26.3 MOSET and TIDESI ...................................... 462
   26.4 ABACUS ................................................ 465
   References ................................................. 470

INDEX ......................................................... 473


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:40 2019. Размер: 20,549 bytes.
Посещение N 1756 c 04.10.2011