Marsico A. Discovery and characterisation of new structure and function motifs in alpha-helical transmembrane proteins with an application to interpret Single Molecule Force Spectroscopy data: Diss. ... Dr. rer. nat (Dresden, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMarsico A. Discovery and characterisation of new structure and function motifs in alpha-helical transmembrane proteins with an application to interpret Single Molecule Force Spectroscopy data: Diss. ... Dr. rer. nat. - Dresden: Techn. Univ., 2010. - 162 p. - Ref.: p.145-159.
 

Оглавление / Contents
 
Publications .................................................... 5

1  Introduction ................................................ 15
   1.1  Open problem 1 ......................................... 17
   1.2  Open problem 2 ......................................... 19

2  Background .................................................. 23
   2.1  Membrane proteins ...................................... 23
        2.1.1  Biological membranes ............................ 23
        2.1.2  Membrane protein classification ................. 24
        2.1.3  Membrane protein structural features and amino
               acid preferences ................................ 27
        2.1.4  Membrane protein folding ........................ 29
        2.1.5  Membrane proteins and diseases .................. 31
        2.1.6  Experimental techniques for membrane protein
               structure determination ......................... 33
        2.1.7  Molecular Dynamics studies of membrane
               proteins ........................................ 36
        2.1.8  Topology prediction methods for transmembrane
               proteins ........................................ 37
        2.1.9  2.5D predictions of transmembrane proteins ...... 39
        2.1.10 3D predictions of transmembrane proteins ........ 43
   2.2  Function prediction of proteins ........................ 45
        2.2.1  Functional annotation from sequence alone ....... 45
        2.2.2  Elucidation of function from structure .......... 47
        2.2.3  Membrane protein-specific motifs ................ 53
   2.3  Outlook ................................................ 56

3  Transmembrane protein motifs ................................ 59
   3.1  Introduction ........................................... 60
   3.2  Results ................................................ 61
        3.2.1  The algorithm for motif generation .............. 61
        3.2.2  Results from the structural fragment
               clustering ...................................... 63
        3.2.3  Motifs and functional annotation ................ 68
        3.2.4  Family-specific and cross-family motifs ......... 73
        3.2.5  Sequence motifs improve transmembrane topology
               prediction tools ................................ 74
   3.3  Discussion and outlook ................................. 78
   3.4  Materials and Methods .................................. 80
        3.4.1  Dataset ......................................... 80
        3.4.2  Fragments generation and description ............ 80
        3.4.3  Generation of the motif library ................. 82
        3.4.4  Prosite comparison by aligning regular
               expressions ..................................... 83
        3.4.5  Functional Annotation of motifs ................. 84
        3.4.6  Statistical and biological significance of
               motifs .......................................... 85

4  A scientific wiki for transmembrane protein motifs .......... 93
   4.1  Motivation ............................................. 94
   4.2  MotifWiki .............................................. 95
        4.2.1  The MotifWiki database .......................... 95
        4.2.2  The MotifWiki web-server ........................ 96
   4.3  Discussion and outlook ................................ 103

5  Transmembrane protein stability investigated by Atomic
   Force Microscopy ........................................... 107
   5.1  Introduction .......................................... 109
   5.2  Algorithm for pattern recognition of membrane-
        protein unfolding pathways ............................ 111
        5.2.1  Data Preparation: filtering bad curves and
               determining zero-force baseline and contact
               point .......................................... 112
        5.2.2  Noise Reduction: singular value
               decomposition .................................. 113
        5.2.3  Curve alignment with dynamic programming ....... 113
        5.2.4  Defining unfolding classes with hierarchical
               clustering ..................................... 114
        5.2.5  Peak detection ................................. 114
   5.3  Progressive alignment of force spectra ................ 115
   5.4  Evaluation of the pattern recognition algorithm for
        SMFS unfolding data ................................... 116
        5.4.1  Experimental setup ............................. 116
        5.4.2  Spurious curves and peak detection ............. 117
        5.4.3  Unfolding pathways ............................. 117
        5.4.4  Curve alignment vs. manual annotation: 76%
               success rate ................................... 117
        5.4.5  Integration of the pattern recognition
               algorithm into the DURIN software .............. 118
   5.5  Case of study I: bacteriorhodopsin and four mutants
        unfolding data ........................................ 120
        5.5.1  Motivation ..................................... 120
        5.5.2  Residue-residue contact area analysis .......... 121
        5.5.3  Coarse-grained model of interaction energies
               for amino acids ................................ 125
   5.6  Case of study II: Two functional states of bovine
        rhodopsin ............................................. 129
        5.6.1  Motivation ..................................... 129
        5.6.2  Analysis of SMFS experiments of bovine
               rhodopsin ...................................... 129
   5.7  Highly conserved sequence-structure motifs and
        unfolding barriers .................................... 131
        5.7.1  Motifs associated to unfolding barriers in
               bacteriorhodopsin (PDB ID: 1brr) ............... 131
        5.7.2  Motifs associated to unfolding barriers in
               sodium/proton antiporter (PDB ID: 1zcd) ........ 132
   5.8  Discussion and outlook ................................ 134

6  Summary and future work .................................... 139
   6.1  Open problem 1 revisited .............................. 139
   6.2  Open problem 2 revisited .............................. 140
   6.3  Future work ........................................... 141
        6.3.1  Improve classification schemes of
               transmembrane proteins ......................... 141
        6.3.2  Detection of distantly related transmembrane
               proteins ....................................... 142
        6.3.3  Creation of a tool for constrained
               transmembrane topology predictions ............. 142
        6.3.4  Prediction of transmembrane protein
               structures constrained by experimental data .... 142

References .................................................... 147

Acknowledgements .............................................. 161


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:30 2019. Размер: 10,974 bytes.
Посещение N 1651 c 23.08.2011