Memoirs of the American Mathematical Society; Vol.209, N983 (Providence, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаWalsh M. Metrics of positive scalar curvature and generalised Morse functions. Part I. - Providence: American Mathematical Society, 2011. - xvii, 80 p. - (Memoirs of the American Mathematical Society; Vol.209, N 983). - Bibliogr.: p.79-80. - ISBN978-0-8218-5304-7; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction ................................................... ix
0.1. Background ................................................ ix
0.2. Main results ............................................. xii
0.3. The connection with generalised Morse functions and
     Part II .................................................. xiv
0.4. Acknowledgements ........................................ xvii

Chapter 1. Definitions and Preliminary Results .................. 1
1.1. Isotopy and concordance in the space of metrics of
     positive scalar curvature .................................. 1
1.2. Warped product metrics on the sphere ....................... 2
1.3. Torpedo metrics on the disk ................................ 4
1.4. Doubly warped products and mixed torpedo metrics ........... 5
1.5. Inducing a mixed torpedo metric with an embedding .......... 9

Chapter 2. Revisiting the Surgery Theorem ...................... 11
2.1. Surgery and cobordism ..................................... 11
2.2. Surgery and positive scalar curvature ..................... 12
2.3. Outline of the proof of Theorem 2.3 ....................... 14
2.4. Part 1 of the proof: Curvature formulae for the first
     deformation ............................................... 15
2.5. Part 2 of the proof: A continuous bending argument ........ 17
2.6. Part 3 of the proof: Isotoping to a standard product ...... 26
2.7. Applying Theorem 2.3 over a compact family of
     psc-metrics ............................................... 29
2.8. The proof of Theorem 2.2 (The Improved Surgery Theorem) ... 31

Chapter 3. Constructing Gromov-Lawson Cobordisms ............... 35
3.1. Morse Theory and admissible Morse functions ............... 35
3.2. A reverse Gromov-Lawson cobordism ......................... 40
3.3. Continuous families of Morse functions .................... 41

Chapter 4. Constructing Gromov-Lawson Concordances ............. 45
4.1. Applying the Gromov-Lawson technique over a pair of
     cancelling surgeries ...................................... 45
4.2. Cancelling Morse critical points: The Weak and Strong
     Cancellation Theorems ..................................... 47
4.3. A strengthening of Theorem 4.2 ............................ 48
4.4. Standardising the embedding of the second surgery
     sphere .................................................... 49

Chapter 5. Gromov-Lawson Concordance Implies Isotopy for
           Cancelling Surgeries ................................ 51
5.1. Connected sums of psc-metrics ............................. 51
5.2. An analysis of the metric g", obtained from the second
     surgery ................................................... 51
5.3. The proof of Theorem 5.1 .................................. 53

Chapter 6. Gromov-Lawson Concordance Implies Isotopy in the
           General Case ........................................ 65
6.1. A weaker version of Theorem 0.8 ........................... 65
6.2. The proof of the main theorem ............................. 67
Appendix: Curvature Calculations from the Surgery Theorem ...... 71

Bibliography ................................................... 79


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:22:16 2019. Размер: 6,967 bytes.
Посещение N 1441 c 07.06.2011