Dierkes U. Minimal surfaces (Berlin; Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDierkes U. Minimal surfaces / U.Dierkes, S.Hildebrandt, F.Sauvigny; with contributions by R.Jakob, A.Kuster. - 2nd ed. - Berlin; Heidelberg: Springer, 2010. - xv, 688 p.: ill. - (Grundlehren der mathematischen Wissenschaften; 339 ). - Bibliogr.: p.599-680. - Ind.: p.681-688. - ISBN: 978-3-642-11697-1; ISSN 0072-7830
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
      Part I.  Introduction to the Geometry of Surfaces and 
                       to Minimal Surfaces

Chapter 1. Differential Geometry of Surfaces in Three-
           Dimensional Euclidean Space .......................... 3
1.1  Surfaces in Euclidean Space ................................ 4
1.2  Gauss Map, Weingarten Map. First, Second and Third 
     Fundamental Form. Mean Curvature and Gauss Curvature ....... 9
1.3  Gauss's Representation Formula, Christoffel Symbols, 
     Gauss-Codazzi Equations, Theorema Egregium, Minding's
     Formula for the Geodesic Curvature ........................ 24
1.4  Conformal Parameters, Gauss-Bonnet Theorem ................ 33
1.5  Covariant Differentiation. The Beltrami Operator .......... 39
1.6  Scholia ................................................... 47

Chapter 2. Minimal Surfaces .................................... 53
2.1  First Variation of Area. Minimal Surfaces ................. 54
2.2  Nonparametric Minimal Surfaces ............................ 58
2.3  Conformal Representation and Analyticity of
     Nonparametric Minimal Surfaces ............................ 62
2.4  Bernstein's Theorem ....................................... 66
2.5  Two Characterizations of Minimal Surfaces ................. 72
2.6  Parametric Surfaces in Conformal Parameters. Conformal
     Representation of Minimal Surfaces. General Definition
     of Minimal Surfaces ....................................... 75
2.7  A Formula for the Mean Curvature .......................... 78
2.8  Absolute and Relative Minima of Area ...................... 82
2.9  Scholia ................................................... 86

Chapter 3. Representation Formulas and Examples of Minimal 
           Surfaces ............................................ 91
3.1  The Adjoint Surface. Minimal Surfaces as Isotropic 
     Curves in fig.13. Associate Minimal Surfaces .................. 93
3.2  Behavior of Minimal Surfaces Near Branch Points .......... 104
3.3  Representation Formulas for Minimal Surfaces ............. 111
3.4  Björling's Problem. Straight Lines and Planar Lines of
     Curvature on Minimal Surfaces. Schwarzian Chains ......... 124
3.5  Examples of Minimal Surfaces ............................. 141
     3.5.1  Catenoid and Helicoid ............................. 141
     3.5.2  Scherk's Second Surface: The General Minimal
            Surface of Helicoidal Type ........................ 146
     3.5.3  The Enneper Surface ............................... 151
     3.5.4  Bour Surfaces ..................................... 155
     3.5.5  Thomsen Surfaces .................................. 156
     3.5.6  Scherk's First Surface ............................ 156
     3.5.7  The Henneberg Surface ............................. 166
     3.5.8  Catalan's Surface ................................. 171
     3.5.9  Schwarz's. Surface ................................ 182
3.6  Complete Minimal Surfaces ................................ 183
3.7  Omissions of the Gauss Map of Complete Minimal 
     Surfaces ................................................. 190
3.8  Scholia .................................................. 200
Color Plates .................................................. 229

                    Part II. Plateau's Problem

Chapter 4. The Plateau Problem and the Partially Free 
           Boundary Problem ................................... 239
4.1  Area Functional Versus Dirichlet Integral ................ 246
4.2  Rigorous Formulation of Plateau's Problem and of the
     Minimization Process ..................................... 251
4.3  Existence Proof, Part I: Solution of the Variational 
     Problem .................................................. 255
4.4  The Courant-Lebesgue Lemma ............................... 260
4.5  Existence Proof, Part II: Conformality of Minimizers of
     the Dirichlet Integral ................................... 263
4.6  Variant of the Existence Proof. The Partially Free
     Boundary Problem ......................................... 275
4.7  Boundary Behavior of Minimal Surfaces with Rectifiable
     Boundaries ............................................... 282
4.8  Reflection Principles .................................... 289
4.9  Uniqueness and Nonuniqueness Questions ................... 292
4.10 Another Solution of Plateau's Problem by Minimizing
     Area ..................................................... 299
4.11 The Mapping Theorems of Riemann and Lichtenstein ......... 305
4.12 Solution of Plateau's Problem for Nonrectifiable
     Boundaries ............................................... 314
4.13 Plateau's Problem for Cartan Functionals ................. 320
4.14 Isoperimetric Inequalities ............................... 327
4.15 Scholia .................................................. 335

Chapter 5. Stable Minimal- and H-Surfaces ..................... 365
5.1  H-Surfaces and Their Normals ............................. 367
5.2  Bonnet's Mapping and Bonnet's Surface .................... 371
5.3  The Second Variation of F for H-Surfaces and Their
     Stability ................................................ 376
5.4  On μ-Stable Immersions of Constant Mean Curvature ........ 382
5.5  Curvature Estimates for Stable and Immersed cmc-
     Surfaces ................................................. 389
5.6  Nitsche's Uniqueness Theorem and Field-Immersions ........ 395
5.7  Some Finiteness Results for Plateau's Problem ............ 407
5.8  Scholia .................................................. 420

Chapter 6. Unstable Minimal Surfaces .......................... 425
6.1  Courant's Function Ө ..................................... 426
6.2  Courant's Mountain Pass Lemma ............................ 438
6.3  Unstable Minimal Surfaces in a Polygon ................... 442
6.4  The Douglas Functional. Convergence Theorems for
     Harmonic Mappings ........................................ 450
6.5  When Is the Limes Superior of a Sequence of Paths Again
     a Path? .................................................. 461
6.6  Unstable Minimal Surfaces in Rectifiable Boundaries ...... 463
6.7  Scholia .................................................. 472
     6.7.1  Historical Remarks and References to the 
            Literature ........................................ 472
     6.7.2  The Theorem of the Wall for Minimal Surfaces
            in Textbooks ...................................... 473
     6.7.3  Sources for This Chapter .......................... 474
     6.7.4  Multiply Connected Unstable Minimal Surfaces ...... 474
     6.7.5  Quasi-Minimal Surfaces ............................ 474

Chapter 7. Graphs with Prescribed Mean Curvature .............. 493
7.1  H-Surfaces with a One-to-One Projection onto a Plane,
     and the Nonparametric Dirichlet Problem .................. 494
7.2  Unique Solvability of Plateau's Problem for Contours
     with a Nonconvex Projection onto a Plane ................. 508
7.3  Miscellaneous Estimates for Nonparametric H-Surfaces ..... 516
7.4  Scholia .................................................. 529

Chapter 8. Introduction to the Douglas Problem ................ 531
8.1  The Douglas Problem. Examples and Main Result ............ 532
8.2  Conformality of Minimizers of D in e(Г) .................. 538
8.3  Cohesive Sequences of Mappings ........................... 552
8.4  Solution of the Douglas Problem .......................... 561
8.5  Useful Modifications of Surfaces ......................... 563
8.6  Douglas Condition and Douglas Problem .................... 568
8.7  Further Discussion of the Douglas Condition .............. 578
8.8  Examples ................................................. 581
8.9  Scholia .................................................. 584

Problems ...................................................... 587

Appendix 1. On Relative Minimizers of Area and Energy ......... 589
Appendix 2. Minimal Surfaces in Heisenberg Groups ............. 597

Bibliography .................................................. 599

Index ......................................................... 681


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:44 2019. Размер: 12,152 bytes.
Посещение N 2029 c 30.11.2010