Ting T.C.T. Anisotropic elasticity: theory and applications (New York; Oxford, 1996). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаTing T.C.T. Anisotropic elasticity: theory and applications. - New York; Oxford: Oxford University Press, 1996. - xvii, 570 p.: ill. - (The Oxford engineering science series; 45). - Ref.: p.537-662. - Auth. ind.: p.563-566. - Sub. ind.: p.567-570. - ISBN 0-19-507447-5
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
1  MATRIX ALGEBRA
   1.1  Notations, Definitions, and Identities .................. 1
   1.2  Eigenvalues and Eigenvectors ............................ 7
   1.3  Diagonalization of Simple and Semisimple Matrices ...... 10
   1.4  Nonsemisimpie Matrices ................................. 11
   1.5  Commutative Matrices ................................... 16
   1.6  Positive Definite Real Matrices ........................ 18
   1.7  Hermitian Matrices ..................................... 21
   1.8  Eigenplane ............................................. 25
   1.9  Square Roots of a Matrix ............................... 27

2  LINEAR ANISOTROPIC ELASTIC MATERIALS
   2.1  Elastic Stiffnesses .................................... 32
   2.2  Elastic Compliances .................................... 34
   2.3  Contracted Notations ................................... 35
   2.4  Reduced Elastic Compliances ............................ 37
   2.5  Material Symmetry ...................................... 40
   2.6  Matrix С for Materials with Symmetry Planes ............ 43
   2.7  Matrices s and s' for Materials with Symmetry Planes ... 51
   2.8  Transformation of С and s .............................. 53
   2.9  Restrictions on Elastic Constants ...................... 56
   2.10 Determination of Symmetry Planes ....................... 59

3  ANTIPLANE DEFORMATIONS
   3.1  Uncoupling of Inplane and Antiplane Displacements ...... 65
   3.2  Plane Stress Deformations .............................. 67
   3.3  General Solutions for Antiplane Deformations ........... 69
   3.4  The Complex Functions lnz and √z2 - α2 ................. 72
   3.5  Green's Functions for Infinite Space and Half-Space .... 75
   3.6  Green's Function for Bimaterials ....................... 80
   3.7  Mapping of an Ellipse to a Circle for z=xl+px2 .......... 83
   3.8  Infinite Space with an Elliptic Hole or an Elliptic 
        Rigid Inclusion ........................................ 90
   3.9  Anisotropic Elliptic Body .............................. 95
   3.10 Green's Functions for an Elliptic Inclusion ........... 100
   3.11 A Crack in an Infinite Space and Bimaterials .......... 109
   3.12 Infinite Space with a Hole of Arbitrary Shape ......... 114
   3.13 Remarks ............................................... 116
   3.14 A Theorem ............................................. 117

4  THE LEKHNITSKII FORMALISM
   4.1  The Airy Function χ and the Stress Function Ψ ......... 118
   4.2  Displacements for Two-Dimensional Stresses ............ 119
   4.3  Differential Equations for χ an Ψ ..................... 121
   4.4  Eigenvalues p ......................................... 123
   4.5  Anisotropic Materials with p1=p2=p3 .................... 125
   4.6  Representation of General Solutions ................... 128
   4.7  Dependence of Solutions on Elastic Constants .......... 131

5  THE STROH FORMALISM
   5.1  The Eshelby-Reid-Shockley Formalism ................... 134
   5.2  Eigenvalues p ......................................... 136
   5.3  The Sextic Formalism of Stroh ......................... 139
   5.4  The Stress Function fig.14 and the Airy Function χ ......... 142
   5.5  Orthogonality and Closure Relations ................... 144
   5.6  Positive Definite Hermitian Matrices .................. 147
   5.7  The Matrix Differential Equation ...................... 149
   5.8  Physical Meanings of p, α, and b ...................... 152
   5.9  Nonsemisimple N ....................................... 153
   5.10  Dependence of Solutions on Elastic Constants ......... 156
   5.11  A.N. Stroh (1926-1962) ............................... 159

6  THE STRUCTURES AND IDENTITIES OF THE ELASTICITY MATRICES
   6.1  The Structure of Nj ................................... 164
   6.2  The Structure of Nj(-1) ................................ 168
   6.3  Explicit Expressions of A and B ....................... 170
   6.4  Explicit Expressions of S, H, and L ................... 172
   6.5  Identities Relating S, H, and L ....................... 175
   6.6  The Structure of S, H, and L .......................... 179
   6.7  Classification of the Eigenvectors ej and ej .......... 186
   6.8  Commutative 6x6 Matrices .............................. 194
   6.9  Identities Connecting p, A, and В to Real Matrices .... 196
   6.10 Eigenvectors of the Extraordinary Semisimple Matrix
        N ..................................................... 199

7  TRANSFORMATION OF THE ELASTICITY MATRICES AND DUAL 
   COORDINATE SYSTEMS
   7.1  Eigenvalues p(θ) ...................................... 201
   7.2  Elasticity Matrices in a Rotated Coordinate System .... 207
   7.3  Sextic Formalism in Dual Coordinate Systems ........... 210
   7.4  Nonsemisimple N(θ) .................................... 215
   7.5  Properties of N(θ) and Nj(θ) .......................... 218
   7.6  The Barnett-Lothe Integral Formalism .................. 222
   7.7  Invariants of S, H, and L ............................. 224
   7.8  Commutative 6x6 Matrices .............................. 228
   7.9  Identities Connecting A, B, and ƒ(z) to Real 
        Matrices .............................................. 230
   7.10 General Solutions and Identities in Dual Coordinate
        Systems ............................................... 235
   7.11 The Tensors G1(θ) and G3(θ) ........................... 240

8  GREENS FUNCTIONS FOR INFINITE SPACE, HALF-SPACE, AND 
   COMPOSITE SPACE
   8.1  Line Force and Line Dislocation in Infinite Space ..... 243
   8.2  One-Component Green's Functions ....................... 250
   8.3  Physical Meanings of the Eigenvectors ej and ej ....... 252
   8.4  Interaction of Two Line Dislocations .................. 255
   8.5  Surface Green's Function .............................. 258
   8.6  Green's Functions for Half-Space ...................... 260
   8.7  Image Singularities ................................... 268
   8.8  Interfacial Green's Function .......................... 273
   8.9  Green's Function for Bimaterials ...................... 283
   8.10 Composite Space and Composite Wedge ................... 291
   8.11 Angularly Inhomogeneous Space and Wedge ............... 295
   8.12 Green's Functions for Concentrated Couple, Double
        Force, and Other Higher Order Singularities ........... 298
   8.13 Wedge Under a Concentrated Couple ..................... 311

9  PARTICULAR SOLUTIONS, STRESS SINGULARITIES, AND STRESS 
   DECAY
   9.1  Wedge Subjected to Tractions .......................... 316
   9.2  Nonuniform Stress Solutions in a Wedge ................ 320
   9.3  Solutions for Critical Wedge Angles ................... 325
   9.4  Eigenfunctions for a Wedge ............................ 329
   9.5  Stress Singularities for Wedge Angles к and In ........ 337
   9.6  Stress Singularities at an Interfacial Crack .......... 341
   9.7  Singularities of the Form rδ(lnr)n .................... 348
   9.8  Singularities Due to Curved Boundaries ................ 352
   9.9  Existence of a Singularity ............................ 356
   9.10 Stress Decay in an Anisotropic Elastic Strip .......... 357

10 ANISOTROPIC MATERIALS WITH AN ELLIPTIC BOUNDARY
   10.1 A Force Applied to an Elliptic Rigid Inclusion ........ 365
   10.2 A Moment Applied to an Elliptic Rigid Inclusion ....... 369
   10.3 Green's Functions for Elliptic Hole or Rigid 
        Inclusion ............................................. 371
   10.4 Surface Green's Function for an Elliptic Hole ......... 376
   10.5 Representations of a Uniform Stress Solution .......... 378
   10.6 Elliptic Hole or Rigid Inclusion Subjected to 
        a Uniform Loading at Infinity ......................... 380
   10.7 Elliptic Elastic Inclusion Subjected to a Uniform 
        Loading at Infinity ................................... 386
   10.8 Elliptic Hole Subjected to Tractions at the Hole ...... 390
   10.9 Anisotropic Elliptic Body ............................. 392
   10.10 Green's Functions for an Elliptic Inclusion .......... 399

11 ANISOTROPIC MEDIA WITH A CRACK OR A RIGID LINE INCLUSION ... 409
   11.1 A Rigid Line Inclusion ................................ 410
   11.2 Green's Functions for a Rigid Line or a Crack ......... 413
   11.3 A Rigid Line Subjected to Uniform Loading ............. 417
   11.4 A Crack in a Homogeneous Medium ....................... 420
   11.5 Non-Oscillatory Solution for an Interfacial Crack ..... 424
   11.6 Oscillatory Solution for an Interfacial Crack ......... 426
   11.7 Multiple Interfacial Cracks With Nonuniform
        Tractions ............................................. 431
   11.8 The Comninou Crack .................................... 433

12 STEADY STATE MOTION AND SURFACE WAVES
   12.1 Reduction to Elastostatics Equations .................. 440
   12.2 The Stroh Formalism ................................... 441
   12.3 Identities for υ < fig.11 .................................. 446
   12.4 Properties of A, B, and L(v) .......................... 449
   12.5 Steady Motion of a Line Singularity ................... 453
   12.6 Homogeneous Plane Waves or Body Waves ................. 454
   12.7 Limiting Wave Speed fig.11 and Exceptional Waves ........... 459
   12.8 One-Component Surface Waves ........................... 462
   12.9 Surface Waves and Interfacial Waves ................... 468
   12.10 Secular Equation and S(υ), H(υ), L(υ) for
        Orthotopic Materials .................................. 477
   12.11 Semisimple and Extraordinary Semisimple Matrix 
        N(υ) .................................................. 483

13 DEGENERATE AND NEAR DEGENERATE MATERIALS
   13.1 General Solution for Degenerate and Near Degenerate
        Materials ............................................. 486
   13.2 Orthogonality and Closure Relations ................... 489
   13.3 A Crack in a Degenerate Material ...................... 492
   13.4 Conversion of Solutions from Non-Degenerate
        Materials ............................................. 493

14 GENERALIZATION OF THE STROH FORMALISM
   14.1 The Stroh Formalism for General Boundary 
        Conditions ............................................ 497
   14.2 Green's Function for Half-Space for a General 
        Boundary Condition .................................... 502
   14.3 Thermo-Anisotropic Elasticity ......................... 506
   14.4 Piezoelectric Materials ............................... 511

15 THREE-DIMENSIONAL DEFORMATIONS
   15.1 Stroh's Eigenrelation for an Oblique Plane ............ 520
   15.2 The Tensors S[x], H[x], L[x] .......................... 523
   15.3 Green's Function for Infinite Space ................... 526
   15.4 Surface Green's Function for Half-Space ............... 528
   15.5 Interfacial Green's Function .......................... 530
   15.6 Green's Function for Half-Space ....................... 532
   15.7 Green's Function for Bimaterials ...................... 534
   15.8 Remarks

REFERENCES .................................................... 537
AUTHOR INDEX .................................................. 563
SUBJECT INDEX ................................................. 567


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:42 2019. Размер: 15,965 bytes.
Посещение N 2050 c 23.11.2010