Razavy M. Quantum theory of tunneling (Singapore, 2003). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRazavy M. Quantum theory of tunneling. - Singapore; River Edge: World Scientific, 2003. - xxi, 549 p.: ill. - Bibliogr.: p.539-540. - Ind.: p.541-549. - ISBN 981-238-019-1
 

Оглавление / Contents
 
Preface ......................................................... v

1  A Brief History of Quantum Tunneling ......................... 1

2  Some Basic Questions Concerning Quantum Tunneling ............ 9
   2.1  Tunneling and the Uncertainty Principle ................. 9
   2.2  Decay of a Quasistationary State ....................... 11

3  Semi-Classical Approximations ............................... 23
   3.1  The WKB Approximation .................................. 23
   3.2  Method of Miller and Good .............................. 31
   3.3  Calculation of the Splitting of Levels in a Symmetric
        Double-Well Potential Using WKB Approximation .......... 35

4  Generalization of the Bohr-Sommerfeld Quantization
   Rule and its Application to Quantum Tunneling ............... 41
   4.1  The Bohr-Sommerfeld Method for Tunneling in Symmetric
        and Asymmetric Wells ................................... 45
   4.2  Numerical Examples ..................................... 48

5  Gamow's Theory, Complex Eigenvalues, and the Wave Function
   of a Decaying State ......................................... 53
   5.1  Solution of the Schrodinger Equation with Radiating
        Boundary Condition ..................................... 53
   5.2  The Time Development of a Wave Packet Trapped Behind
        a Barrier .............................................. 57
   5.3  A More Accurate Determination of the Wave Function of
        a Decaying State ....................................... 61
   5.4  Some Instances Where WKB Approximation and the Gamow
        Formula Do Not Work .................................... 66

6  Simple Solvable Problems .................................... 73
   6.1  Confining Double-Well Potentials ....................... 73
   6.2  Time-dependent Tunneling for a δ-Function Barrier ...... 79
   6.3  Tunneling Through Barriers of Finite Extent ............ 82
   6.4  Tunneling Through a Series of Identical Rectangular
        Barriers ............................................... 90
   6.5  Eckart's Potential ..................................... 96
   6.6  Double-Well Morse Potential ............................ 99

7  Tunneling in Confining Symmetric and Asymmetric Double-
   Wells ...................................................... 105
   7.1  Tunneling When the Barrier is Nonlocal ................ 112
   7.2  Tunneling in Separable Potentials ..................... 116
   7.3  A Solvable Asymmetric Double-Well Potential ........... 119
   7.4  Quasi-Solvable Examples of Symmetric and Asymmetric
        Double-Wells .......................................... 121
   7.5  Gel'fand-Levitan Method ............................... 124
   7.6  Darboux's Method ...................................... 127
   7.7  Optical Potential Barrier Separating Two Symmetric
        or Asymmetric Wells ................................... 128

8  A Classical Description of Tunneling ....................... 139

9  Tunneling in Time-Dependent Barriers ....................... 149
   9.1  Multi-Channel Schrodinger Equation for Periodic
        Potentials ............................................ 150
   9.2  Tunneling Through an Oscillating Potential Barrier .... 152
   9.3  Separable Tunneling Problems with Time-Dependent
        Barriers .............................................. 157
   9.4  Penetration of a Particle Inside a Time-Dependent
        Potential Barrier ..................................... 162

10 Decay Width and the Scattering Theory ...................... 167
   10.1 Scattering Theory and the Time-Dependent Schrodinger
        Equation .............................................. 168
   10.2 An Approximate Method of Calculating the Decay
        Widths ................................................ 173
   10.3 Time-Dependent Perturbation Theory Applied to the
        Calculation of Decay Widths of Unstable States ........ 176
   10.4 Early Stages of Decay via Tunneling ................... 181
   10.5 An Alternative Way of Calculating the Decay Width
        Using the Second Order Perturbation Theory ............ 184
   10.6 Tunneling Through Two Barriers ........................ 186
   10.7 Escape from a Potential Well by Tunneling Through
        both Sides ............................................ 191
   10.8 Decay of the Initial State and the Jost Function ...... 196

11 The Method of Variable Reflection Amplitude Applied
   to Solve Multichannel Tunneling Problems ................... 205
   11.1 Mathematical Formulation .............................. 206
   11.2 Matrix Equations and Semi-classical Approximation
        for Many-Channel Problems ............................. 212

12 Path Integral and Its Semi-Classical Approximation in
   Quantum Tunneling .......................................... 219
   12.1 Application to the S-Wave Tunneling of a Particle
        Through a Central Barrier ............................. 222
   12.2 Method of Euclidean Path Integral ..................... 226
   12.3 An Example of Application of the Path Integral
        Method in Tunneling ................................... 231
   12.4 Complex Time, Path Integrals and Quantum Tunneling .... 237
   12.5 Path Integral and the Hamilton-Jacobi Coordinates ..... 241
   12.6 Remarks About the Semi-Classical Propagator and
        Tunneling Problem ..................................... 243

13 Heisenberg's Equations of Motion for Tunneling ............. 251
   13.1 The Heisenberg Equations of Motion for Tunneling in
        Symmetric and Asymmetric Double-Wells ................. 252
   13.2 Tunneling in a Symmetric Double-Well .................. 258
   13.3 Tunneling in an Asymmetric Double-Well ................ 259
   13.4 Tunneling in a Potential Which Is the Sum of Inverse
        Powers of the Radial Distance ......................... 261
   13.5 Klein's Method for the Calculation of the
        Eigenvalues of a Confining Double-Well Potential ...... 267

14 Wigner Distribution Function in Quantum Tunneling .......... 277
   14.1 Wigner Distribution Function and Quantum Tunneling .... 281
   14.2 Wigner Trajectory for Tunneling in Phase Space ........ 284
   14.3 Wigner Distribution Function for an Asymmetric
        Double-Well ........................................... 290
   14.4 Wigner Trajectory for an Oscillating Wave Packet ...... 290
   14.5 Margenau-Hill Distribution Function for a  Double-
        Well Potential ........................................ 292

15 Complex Scaling and Dilatation Transformation Applied
   to the Calculation of the Decay Width ...................... 297

16 Multidimensional Quantum Tunneling ......................... 307
   16.1 The Semi-classical Approach of Kapur and Peierls ...... 307
   16.2 Wave Function for the Lowest Energy State ............. 311
   16.3 Calculation of the Low-Lying Wave Functions by
        Quadrature ............................................ 313
   16.4 Method of Quasilinearization Applied to the Problem
        of Multidimensional Tunneling ......................... 318
   16.5 Solution of the General Two-Dimensional Problems ...... 323
   16.6 The Most Probable Escape Path ......................... 327

17 Group and Signal Velocities ................................ 339

18 Time-Delay, Reflection Time Operator and Minimum
   Tunneling Time ............................................. 351
   18.1 Time-Delay in Tunneling ............................... 352
   18.2 Time-Delay for Tunneling of a Wave Packet ............. 356
   18.3 Landauer and Martin Criticism of theDefinition of
        the Time-Delay in Quantum Tunneling ................... 365
   18.4 Time-Delay in Multi-Channel Tunneling ................. 368
   18.5 Reflection Time in Quantum Tunneling .................. 371
   18.6 Minimum Tunneling Time ................................ 375

19 More about Tunneling Time .................................. 381
   19.1 Dwell and Phase Tunneling Times ....................... 382
   19.2 Buttiker and Landauer Time ............................ 385
   19.3 Larmor Precession ..................................... 388
   19.4 Tunneling Time and its Determination Using the
        Internal Energy of a Simple Molecule .................. 392
   19.5 Intrinsic Time ........................................ 394
   19.6 A Critical Study of the Tunneling Time Determination
        by a Quantum Clock .................................... 398
   19.7 Tunneling Time According to Low and Mende ............. 402

20 Tunneling of a System with Internal Degrees of Freedom ..... 411
   20.1 Lifetime of Coupled-Channel Resonances ................ 411
   20.2 Two-Coupled Channel Problem with Spherically
        Symmetric Barriers .................................... 413
   20.3 A Numerical Example ................................... 415
   20.4 Tunneling of a Simple Molecule ........................ 418
   20.5 Tunneling of a Molecule in Asymmetric Double-Wells .... 424
   20.6 Tunneling of a Molecule Through a Potential Barrier ... 429
   20.7 Antibound State of a Molecule ......................... 434

21 Motion of a Particle in a Space Bounded by a Surface of
   Revolution ................................................. 439
   21.1 Testing the Accuracy of the Present Method ............ 444
   21.2 Calculation of the Eigenvalues ........................ 445

22 Relativistic Formulation of Quantum Tunneling .............. 453
   22.1 One-Dimensional Tunneling of the Electrons ............ 453
   22.2 Tunneling of Spinless Particles in One Dimension ...... 458
   22.3 Tunneling Time in Special Relativity .................. 461

23 The Inverse Problem of Quantum Tunneling ................... 471
   23.1 A Method for Finding the Potential from the
        Reflection Amplitude .................................. 472
   23.2 Determination of the Shape of the Potential Barrier
        in One-Dimensional Tunneling .......................... 473
   23.3 Prony's Method of Determination of Complex Energy
        Eigenvalues ........................................... 476
   23.4 A Numerical Example ................................... 478
   23.5 The Inverse Problem of Tunneling for Gamow States ..... 479

24 Some Examples of Quantum Tunneling in Atomic and
   Molecular Physics .......................................... 485
   24.1 Torsional Vibration of a Molecule ..................... 485
   24.2 Electron Emission from the Surface of Cold Metals ..... 488
   24.3 Ionization of Atoms in Very Strong Electric Field ..... 491
   24.4 A Time-Dependent Formulation of Ionization in an
        Electric Field ........................................ 493
   24.5 Ammonia Maser ......................................... 497
   24.6 Optical Isomers ....................................... 500
   24.7 Three-Dimensional Tunneling in the Presence of
        a Constant Field of Force ............................. 501

25 Examples from Condensed Matter Physics ..................... 511
   25.1 The Band Theory of Solids and the Kronig-Penney
        Model ................................................. 511
   25.2 Tunneling in Metal-Insulator-Metal Structures ......... 515
   25.3 Many Electron Formulation of the Current .............. 516
   25.4 Electron Tunneling Through Hetero-structures .......... 525

26 Alpha Decay ................................................ 531

Index ......................................................... 541


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:42 2019. Размер: 15,489 bytes.
Посещение N 2701 c 23.11.2010