Giusti E. Direct methods in the calculus of variations (Singapore, 2003 (2005)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGiusti E. Direct methods in the calculus of variations. - Singapore: World Scientific, 2003 (2005). - vii, 403 p. - Ref.: p.377-398. - Ind.: p.399-403. - ISBN 981-238-043-4
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

Chapter 1  Semi-Classical Theory ............................... 13
1.1  The Maximum Principle ..................................... 14
1.2  The Bounded Slope Condition ............................... 18
1.3  Barriers .................................................. 22
1.4  The Area Functional ....................................... 30
1.5  Non-Existence of Minimal Surfaces ......................... 32
1.6  Notes and Comments ........................................ 36

Chapter 2  Measurable Functions ................................ 39
2.1  Lp Spaces ................................................. 39
2.2  Test Functions and Mollifiers ............................. 44
2.3  Morrey's and Campanato's Spaces ........................... 46
2.4  The Lemmas of John and Nirenberg .......................... 54
2.5  Interpolation ............................................. 61
2.6  The Hausdorff Measure ..................................... 68
2.7  Notes and Comments ........................................ 71

Chapter 3  Sobolev Spaces ...................................... 75
3.1  Partitions of Unity ....................................... 75
3.2  Weak Derivatives .......................................... 79
3.3  The Sobolev Spaces Wk,p ................................... 83
3.4  Imbedding Theorems ........................................ 90
3.5  Compactness ............................................... 98
3.6  Inequalities ............................................. 101
3.7  Traces ................................................... 106
3.8  The Values of W1,p Functions ............................. 110
3.9  Notes and Comments ....................................... 114

Chapter 4  Convexity and Semicontinuity ....................... 119
4.1  Preliminaries ............................................ 119
4.2  Convex Functional ........................................ 121
4.3  Semicontinuity ........................................... 123
4.4  An Existence Theorem ..................................... 131
4.5  Notes and Comments ....................................... 134

Chapter 5  Quasi-Convex Functionals ........................... 139
5.1  Necessary Conditions ..................................... 139
5.2  First Semicontinuity Results ............................. 150
5.3  The Quasi-Convex Envelope ................................ 155
5.4  The Ekeland Variational Principle ........................ 160
5.5  Semicontinuity 4 ......................................... 162
5.6  Coerciveness and Existence ............................... 168
5.7  Notes and Comments ....................................... 170

Chapter 6  Quasi-Minima ....................................... 173
6.1  Preliminaries ............................................ 173
6.2  Quasi-Minima and Differential Quations ................... 175
6.3  Cubical Quasi-Minima ..................................... 187
6.4  Lp Estimates for the Gradient ............................ 197
6.5  Boundary Estimates ....................................... 206
6.6  Notes and Comments ....................................... 209

Chapter 7  Holder Continuity .................................. 213
7.1  Caccioppoli's Inequality ................................. 213
7.2  De Giorgi Classes ........................................ 218
7.3  Quasi-Minima ............................................. 225
7.4  Boundary Regularity ...................................... 232
7.5  The Harnack Inequality ................................... 235
7.6  The Homogeneous Case ..................................... 242
7.7  ω-Minima ................................................. 245
7.8  Boundary Regularity ...................................... 255
7.9  Notes and Comments ....................................... 257

Chapter 8  First Derivatives .................................. 261
8.1  The Difference Quotients ................................. 263
8.2  Second Derivatives ....................................... 266
8.3  Gradient Estimates ....................................... 271
8.4  Boundary Estimates ....................................... 274
8.5  ω-Minima ................................................. 278
8.6  Holder Continuity of the Derivatives (p = 2) ............. 285
8.7  Other Gradient Estimates ................................. 288
8.8  Holder Continuity of the Derivatives (p ≠ 2) ............. 298
8.9  Elliptic Equations ....................................... 301
8.10 Notes and Comments ....................................... 304

Chapter 9  Partial Regularity ................................. 307
9.1  Preliminaries ............................................ 307
9.2  Quadratic Functional ..................................... 309
9.3  The Second Caccioppoli Inequality ........................ 319
9.4  The Case F = F(z) (p = 2) ................................ 329
9.5  Partial Regularity ....................................... 333
9.6  Notes and Comments ....................................... 342

Chapter 10 Higher Derivatives ................................. 347
10.1 Hilbert Regularity ....................................... 348
10.2 Constant Coefficients .................................... 355
10.3 Continuous Coefficients .................................. 362
10.4 LP Estimates ............................................. 368
10.5 Minima of Functional ..................................... 374
10.6 Notes and Comments ....................................... 375
References .................................................... 377

Index ......................................................... 399


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:40 2019. Размер: 9,560 bytes.
Посещение N 1665 c 23.11.2010