Mathematical surveys and monographs; 148 (Providence, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDehornoy P. Ordering braids / P.Dehornoy; with I.Dynnikov, D.Rolfsen, B.Wiest. - Providence: American Mathematical Society, 2008. - ix, 323 p.: ill. - (Mathematical surveys and monographs; Vol.148). - ix, 323 p.: ill. - Bibliogr.: p.311-317. - Ind.: p.319-323. - ISBN 978-0-8218-4431-1; ISSN 0076-5376
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix
Introduction .................................................... 1
   A meeting of two classical subjects .......................... 1
   A convergence of approaches .................................. 3
   Organization of the text ..................................... 5
   Guidelines to the reader ..................................... 7
   Acknowledgements ............................................. 8

Chapter I.   Braid Groups ....................................... 9
1. The Artin presentation ....................................... 9
2. Isotopy classes of braid diagrams ........................... 10
3. Mapping class groups ........................................ 12
4. Positive braids ............................................. 14

Chapter II.  A Linear Ordering of Braids ....................... 19
1. The σ-ordering of Bn ........................................ 19
2. Local properties of the σ-ordering .......................... 26
3. Global properties of the σ-ordering ......................... 29
4. The σ-ordering of positive braids ........................... 35

Chapter III. Applications of the Braid Ordering ................ 43
1. Consequences of orderability ................................ 44
2. Applications of more specific properties .................... 46
3. Application of well-orderability ............................ 50

Chapter IV.  Self-distributivity ............................... 55
1. Colouring positive braids ................................... 56
2. Colouring arbitrary braids .................................. 66
3. The group of left self-distributivity ....................... 76
4. Normal forms in free LD-systems ............................. 81
5. Appendix: Iterations of elementary embeddings in set
   theory ...................................................... 84

Chapter V.   Handle Reduction .................................. 87
1. Description of handle reduction ............................. 87
2. Convergence of handle reduction ............................. 92
3. Special cases and variants ................................. 102

Chapter VI.  Connection with the Garside Structure ............ 107
1. The degree of a positive braid ............................. 108
2. Proving Property С using a counting argument ............... 113
3. The increasing enumeration of Div(Δdn) ..................... 117

Chapter VII. Alternating Decompositions ....................... 129
1. The Φn-splitting of a braid in B+n ......................... 130
2. The Φ-normal form .......................................... 135
3. Burckel's approach ......................................... 143
4. Applications ............................................... 148

Chapter VIII.Dual Braid Monoids ............................... 153
1. Dual braid monoids ......................................... 154
2. The fig.14-normal form on Bn+* ................................... 159
3. Connection between orders .................................. 163

Chapter IX.  Automorphisms of a Free Group .................... 173
1. Artin representation of σ-positive braids .................. 173
2. Prom an automorphism back to a braid ....................... 178
3. Pulling back orderings of free groups ...................... 182

Chapter X.   Curve Diagrams ................................... 185
1. A braid ordering using curve diagrams ...................... 185
2. Proof of Properties A, C, and S ............................ 189

Chapter XI   Relaxation Algorithms ............................ 195
1. Bressaud's regular language of relaxation braids ........... 196
2. The transmission-relaxation normal form of braids .......... 204

Chapter XII. Triangulations ................................... 221
1. The coordinates of a braid ................................. 222
2. Triangulations and laminations ............................. 225
3. The Mosher normal form ..................................... 236

Chapter XIII.Hyperbolic Geometry .............................. 247
1. Uncountably many orderings of the braid group .............. 248
2. The classification of orderings induced by the action on 
   fig.1 .......................................................... 256
3. The subword property for all Nielsen-Thurston type 
   orderings .................................................. 263

Chapter XIV. The Space of all Braid Orderings ................. 265
1. The spaces of orderings on a group ......................... 265
2. The space of left-orderings of the braid groups ............ 268

Chapter XV.  Bi-ordering the Pure Braid Groups ................ 273
1. Lower central series ....................................... 273
2. Artin coordinates and Magnus expansion ..................... 274
3. The Magnus ordering of PBn ................................. 279
4. The ordering of positive pure braids ....................... 283
5. Incompatibility of the orderings ........................... 286

Chapter XVI. Open Questions and Extensions .................... 291
1. General questions .......................................... 291
2. More specific questions .................................... 293
3. Generalizations and extensions.............................. 301

Key Definitions ............................................... 309
Bibliography .................................................. 311
Index of Notation ............................................. 319
Index ......................................................... 321


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:40 2019. Размер: 9,742 bytes.
Посещение N 1723 c 23.11.2010