Positselski L. Homological algebra of semimodules and semicontramodules (Basel, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPositselski L. Homological algebra of semimodules and semicontramodules. - Basel: Birkhäuser, 2010. - xiv, 349 p. - (Monografie Matematyczne. New series; Vol.70). - Bibliogr.: p.333-338. - Ind.: p.343-349. - ISBN 978-3-0346-0435-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi
Introduction ................................................... xv

0  Preliminaries and Summary
   0.1  Unbounded Tor and Ext ................................... 1
   0.2  Coalgebras over fields; Cotor and Coext ................. 3
   0.3  Semialgebras over coalgebras over fields ............... 11
   0.4  Nonhomogeneous Koszul duality over a base ring ......... 18

1  Semialgebras and Semitensor Product
   1.1  Corings and comodules .................................. 25
   1.2  Cotensor product ....................................... 27
   1.3  Semialgebras and semimodules ........................... 32
   1.4  Semitensor product ..................................... 35

2  Derived Functor SemiTor
   2.1  Coderived categories ................................... 39
   2.2  Coflat complexes ....................................... 40
   2.3  Semiderived categories ................................. 41
   2.4  Semiflat complexes ..................................... 41
   2.5  Main theorem for comodules ............................. 43
   2.6  Main theorem for semimodules ........................... 45
   2.7  Derived functor SemiTor ................................ 48
   2.8  Relatively semiflat complexes .......................... 51
   2.9  Remarks on derived semitensor product of 
        bisemimodules .......................................... 53

3  Semicontramodules and Semihomomorphisms
   3.1  Contramodules .......................................... 57
   3.2  Cohomomorphisms ........................................ 59
   3.3  Semicontramodules ...................................... 65
   3.4  Semihomomorphisms ...................................... 71

4  Derived Functor SemiExt
   4.1  Contraderived categories ............................... 77
   4.2  Coprojective and coinjective complexes ................. 77
   4.3  Semiderived categories ................................. 78
   4.4  Semiprojective and semiinjective complexes ............. 78
   4.5  Main theorem for comodules and contramodules ........... 79
   4.6  Main theorem for semimodules and semicontramodules ..... 81
   4.7  Derived functor SemiExt ................................ 83
   4.8  Relatively semiprojective and semiinjective 
        complexes .............................................. 85
   4.9  Remarks on derived semihomomorphisms from 
        bisemimodules .......................................... 87

5  Comodule-Contramodule Correspondence
   5.1  Contratensor product and comodule/contramodule 
        homomorphisms .......................................... 89
   5.2  Associativity isomorphisms ............................. 91
   5.3  Relatively injective comodules and relatively
        projective contramodules ............................... 95
   5.4  Comodule-contramodule correspondence ................... 97
   5.5  Derived functor Ctrtor ................................ 101
   5.6  Coext and Ext, Cotor and Ctrtor ....................... 104

6  Semimodule-Semicontrainpdule Correspondence
   6.1  Contratensor product and semimodule/semicontramodule
        homomorphisms ......................................... 107
   6.2  Associativity isomorphisms ............................ 110
   6.3  Semimodule-semicontramodule correspondence ............ 117
   6.4  Birelatively contraflat, projective, and injective
        complexes ............................................. 118
   6.5  Derived functor CtrTor ................................ 120
   6.6  SemiExt and Ext, SemiTor and CtrTor ................... 123

7  Functoriality in the Coring
   7.1  Compatible morphisms .................................. 125
   7.2  Properties of the pull-back and push-forward
        functors .............................................. 129
   7.3  Derived functors of pull-back and push-forward ........ 132
   7.4  Faithfully Hat/projective base ring change ............ 134
   7.5  Remarks on Morita morphisms ........................... 137

8  Functoriality in the Semialgebra
   8.1  Compatible morphisms .................................. 143
   8.2  Complexes, adjusted to pull-backs and push-forwards ... 150
   8.3  Derived functors of pull-back and push-forward ........ 153
   8.4  Remarks on Morita morphisms ........................... 160

9  Closed Model Category Structures
   9.1  Complexes of comodules and contramodules .............. 169
   9.2  Complexes of semimodules and semicontramodules ........ 173

10 A Construction of Semialgebras
   10.1 Construction of comodules and contramodules ........... 183
   10.2 Construction of semialgebras .......................... 185
   10.3 Entwining structures .................................. 188
   10.4 Semiproduct and semimorphisms ......................... 191

11 Relative Nonhomogeneous Koszul Duality
   11.1 Graded semialgebras ................................... 193
   11.2 Differential semialgebras ............................. 194
   11.3 One-sided SemiTor ..................................... 198
   11.4 Koszul semialgebras and corings ....................... 199
   11.5 Central element theorem ............................... 205
   11.6 Poincare-Birkhoff-Witt theorem ........................ 208
   11.7 Quasi-differential comodules and contramodules ........ 213
   11.8 Koszul duality ........................................ 217
   11.9 SemiTor and Cotor, SemiExt and Coext .................. 221

Appendices

A  Contramodules over Coalgebras over Fields
   A.l  Counterexamples ....................................... 229
   A.2  Nakayama's Lemma ...................................... 232
   A.3  Contraflat contramodules .............................. 234

В  Comparison with Arkhipov's Ext/2+* and Sevostyanov's
   Tor/2+*
   B.l  Algebras R and R# ..................................... 237
   B.2  Finite-dimensional case ............................... 240
   B.3  Semijective complexes ................................. 241
   B.4  Explicit resolutions .................................. 243
   B.5  Explicit resolutions for a finite-dimensional 
        subalgebra ............................................ 244

С  Semialgebras Associated to Harish-Chandra Pairs 
        by Leonid Positselski and Dmitriy Rumynin
   C.l  Two semialgebras ...................................... 247
   C.2  Morita equivalence .................................... 250
   C.3  Semitensor product and semihomomorphisms, SemiTor
        and SemiExt ........................................... 254
   C.4  Harish-Chandra pairs .................................. 257
   C.5  Semiinvariants and semicontrainvariants ............... 260

D  Tate Harish-Chandra Pairs and Tate Lie Algebras 
        by Sergey Arkhipov and Leonid Positselski
   D.l  Continuous coactions .................................. 265
   D.2  Construction of semialgebra ........................... 271
   D.3  Isomorphism of semialgebras ........................... 281
   D.4  Semiinvariants and semicontrainvariants ............... 290
   D.5  Semi-infinite homology and cohomology ................. 294
   D.6  Comparison theorem .................................... 301

E  Groups with Open Profinite Subgroups
   E.l  Morita equivalent semialgebras ........................ 309
   E.2  Semiinvariants and semicontrainvariants ............... 312
   E.3  SemiTor and SemiExt ................................... 316
   E.4  Remarks on the Gaitsgory-Kazhdan construction ......... 318

F  Algebraic Groupoids with Closed Subgroupoids
   F.l  Coring associated to affine groupoid .................. 323
   F.2  Canonical Morita Autoequivalence ...................... 324
   F.3  Distributions and generalized sections ................ 325
   F.4  Lie algebroid of a groupoid ........................... 326
   F.5  Two Morita equivalent semialgebras .................... 328
   F.6  Compatibility verifications ........................... 330

Bibliography .................................................. 333

Notation ...................................................... 339

Index ......................................................... 343


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:38 2019. Размер: 12,296 bytes.
Посещение N 1879 c 16.11.2010