LeVeque R.J. Finite volume methods for hyperbolic problems (Cambridge; New York, 2002 (2007)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLeVeque R.J. Finite volume methods for hyperbolic problems. - Cambridge; New York: Cambridge University Press, 2002 (2007). - xix, 558 p.: ill. - (Cambridge texts in applied mathematics). - Bibliogr.: p.535-552. - Ind.: p.553-558. - ISBN 978-0-521-81087-6; ISBN 978-0-521-00924-9
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ...................................................... xvii

1   Introduction ................................................ 1
    1.1   Conservation Laws ..................................... 3
    1.2   Finite Volume Methods ................................. 5
    1.3   Multidimensional Problems ............................. 6
    1.4   Linear Waves and Discontinuous Media .................. 7
    1.5   CLAWPACK Software ..................................... 8
    1.6   References ............................................ 9
    1.7   Notation ............................................. 10

Part I  Linear Equations

2   Conservation Laws and Differential Equations ............... 15
    2.1   The Advection Equation ............................... 17
    2.2   Diffusion and the Advection-Diffusion Equation ....... 20
    2.3   The Heat Equation .................................... 21
    2.4   Capacity Functions ................................... 22
    2.5   Source Terms ......................................... 22
    2.6   Nonlinear Equations in Fluid Dynamics ................ 23
    2.7   Linear Acoustics ..................................... 26
    2.8   Sound Waves .......................................... 29
    2.9   Hyperbolicity of Linear Systems ...................... 31
    2.10  Variable-Coefficient Hyperbolic Systems .............. 33
    2.11  Hyperbolicity of Quasilinear and Nonlinear Systems ... 34
    2.12  Solid Mechanics and Elastic Waves .................... 35
    2.13  Lagrangian Gas Dynamics and the p-System ............. 41
    2.14  Electromagnetic Waves ................................ 43
          Exercises ............................................ 46

3   Characteristics and Riemann Problems for Linear
    Hyperbolic Equations ....................................... 47
    3.1   Solution to the Cauchy Problem ....................... 47
    3.2   Superposition of Waves and Characteristic 
          Variables ............................................ 48
    3.3   Left Eigenvectors .................................... 49
    3.4   Simple Waves ......................................... 49
    3.5   Acoustics ............................................ 49
    3.6   Domain of Dependence and Range of Influence .......... 50
    3.7   Discontinuous Solutions .............................. 52
    3.8   The Riemann Problem for a Linear System .............. 52
    3.9   The Phase Plane for Systems of Two Equations ......... 55
    3.10  Coupled Acoustics and Advection ...................... 57
    3.11  Initial-Boundary-Value Problems ...................... 59
          Exercises ............................................ 62

4   Finite Volume Methods ...................................... 64
    4.1   General Formulation for Conservation Laws ............ 64
    4.2   A Numerical Flux for the Diffusion Equation .......... 66
    4.3   Necessary Components for Convergence ................. 67
    4.4   The CFL Condition .................................... 68
    4.5   An Unstable Flux ..................................... 71
    4.6   The Lax-Friedrichs Method ............................ 71
    4.7   The Richtmyer Two-Step Lax-Wendroff Method ........... 72
    4.8   Upwind Methods ....................................... 72
    4.9   The Upwind Method for Advection ...................... 73
    4.10  Godunov's Method for Linear Systems .................. 76
    4.11  The Numerical Flux Function for Godunov's Method ..... 78
    4.12  The Wave-Propagation Form of Godunov's Method ........ 78
    4.13  Flux-Difference vs. Flux-Vector Splitting ............ 83
    4.14  Roe's Method ......................................... 84
          Exercises ............................................ 85

5   Introduction to the CLAWPACK Software ...................... 87
    5.1   Basic Framework ...................................... 87
    5.2   Obtaining clawpack ................................... 89
    5.3   Getting Started ...................................... 89
    5.4   Using CLAWPACK - a Guide through examplel ............ 91
    5.5   Other User-Supplied Routines and Files ............... 98
    5.6   Auxiliary Arrays and setaux.f ........................ 98
    5.7   An Acoustics Example ................................. 99
          Exercises ............................................ 99

6   High-Resolution Methods ................................... 100
    6.1   The Lax-Wendroff Method ............................. 100
    6.2   The Beam-Warming Method ............................. 102
    6.3   Preview of Limiters ................................. 103
    6.4   The REA Algorithm with Piecewise Linear 
          Reconstruction ...................................... 106
    6.5   Choice of Slopes .................................... 107
    6.6   Oscillations ........................................ 108
    6.7   Total Variation ..................................... 109
    6.8   TVD Methods Based on the REA Algorithm .............. 110
    6.9   Slope-Limiter Methods ............................... 111
    6.10  Flux Formulation with Piecewise Linear
          Reconstruction ...................................... 112
    6.11  FluxLimiters ........................................ 114
    6.12  TVDLimiters ......................................... 115
    6.13  High-Resolution Methods for Systems ................. 118
    6.14  Implementation ...................................... 120
    6.15  Extension to Nonlinear Systems ...................... 121
    6.16  Capacity-Form Differencing .......................... 122
    6.17  Nonuniform Grids .................................... 123
          Exercises ........................................... 127

7   Boundary Conditions and Ghost Cells ....................... 129
    7.1   Periodic Boundary Conditions ........................ 130
    7.2   Advection ........................................... 130
    7.3   Acoustics ........................................... 133
          Exercises ........................................... 138

8   Convergence, Accuracy, and Stability ...................... 139
    8.1   Convergence ......................................... 139
    8.2   One-Step and Local Truncation Errors ................ 141
    8.3   Stability Theory .................................... 143
    8.4   Accuracy at Extrema ................................. 149
    8.5   Order of Accuracy Isn't Everything .................. 150
    8.6   Modified Equations .................................. 151
    8.7   Accuracy Near Discontinuities ....................... 155
          Exercises ........................................... 156

9   Variable-Coefficient Linear Equations ..................... 158
    9.1   Advection in a Pipe ................................. 159
    9.2   Finite Volume Methods ............................... 161
    9.3   The Color Equation .................................. 162
    9.4   The Conservative Advection Equation ................. 164
    9.5   Edge Velocities ..................................... 169
    9.6   Variable-Coefficient Acoustics Equations ............ 171
    9.7   Constant-Impedance Media ............................ 172
    9.8   Variable Impedance .................................. 173
    9.9   Solving the Riemann Problem for Acoustics ........... 177
    9.10  Transmission and Reflection Coefficients ............ 178
    9.11  Godunov's Method .................................... 179
    9.12  High-Resolution Methods ............................. 181
    9.13  Wave Limiters ....................................... 181
    9.14  Homogenization of Rapidly Varying Coefficients ...... 183
          Exercises ........................................... 187

10  Other Approaches to High Resolution ....................... 188
    10.1  Centered-in-Time Fluxes ............................. 188
    10.2  Higher-Order High-Resolution Methods ................ 190
    10.3  Limitations of the Lax-Wendroff (Taylor Series)
          Approach ............................................ 191
    10.4  Semidiscrete Methods plus Time Stepping ............. 191
    10.5  Staggered Grids and Central Schemes ................. 198
          Exercises ........................................... 200

Part II  Nonlinear Equations

11  Nonlinear Scalar Conservation Laws ........................ 203
    11.1  Traffic Flow ........................................ 203
    11.2  Quasilinear Korm and Characteristics ................ 206
    11.3  Burgers' Equation ................................... 208
    11.4  Rarefaction Waves ................................... 209
    11.5  Compression Waves ................................... 210
    11.6  Vanishing Viscosity ................................. 210
    11.7  Equal-Area Rule ..................................... 211
    11.8  Shock Speed ......................................... 212
    11.9  The Rankine-Hugoniot Conditions for Systems ......... 213
    11.10 Similarity Solutions and Centered Rarefactions ...... 214
    11.11 Weak Solutions ...................................... 215
    11.12 Manipulating Conservation Laws ...................... 216
    11.13 Nonuniqueness, Admissibility, and Entropy 
          Conditions .......................................... 216
    11.14 Entropy Functions ................................... 219
    11.15 Long-Time Behavior and N-Wave Decay ................. 222
          Exercises ........................................... 224

12  Finite Volume Methods for Nonlinear Scalar Conservation
    Laws ...................................................... 227
    12.1  Godunov's Method .................................... 227
    12.2  Fluctuations, Waves, and Speeds ..................... 229
    12.3  Transonic Rarefactions and an Entropy Fix ........... 230
    12.4  Numerical Viscosity ................................. 232
    12.5  The Lax-Friedrichs and Local Lax-Friedrichs
          Methods ............................................. 232
    12.6  The Engquist-Osher Method ........................... 234
    12.7  E-schemes ........................................... 235
    12.8  High-Resolution TVD Methods ......................... 235
    12.9  The Importance of Conservation Form ................. 237
    12.10 The Lax-Wendroff Theorem ............................ 239
    12.11 The Entropy Condition ............................... 243
    12.12 Nonlinear Stability ................................. 244
          Exercises ........................................... 252

13  Nonlinear Systems of Conservation Laws .................... 253
    13.1  The Shallow Water Equations ......................... 254
    13.2  Dam-Break and Riemann Problems ...................... 259
    13.3  Characteristic Structure ............................ 260
    13.4  A Two-Shock Riemann Solution ........................ 262
    13.5  Weak Waves and the Linearized Problem ............... 263
    13.6  Strategy for Solving the Riemann Problem ............ 263
    13.7  Shock Waves and Hugoniot Loci ....................... 264
    13.8  Simple Waves and Rarefactions ....................... 269
    13.9  Solving the Dam-Break Problem ....................... 279
    13.10 The General Riemann Solver for Shallow Water
          Equations ........................................... 281
    13.11 Shock Collision Problems ............................ 282
    13.12 Linear Degeneracy and Contact Discontinuities ....... 283
          Exercises ........................................... 287

14  Gas Dynamics and the Euler Equations ...................... 291
    14.1  Pressure ............................................ 291
    14.2  Energy .............................................. 292
    14.3  The Euler Equations ................................. 293
    14.4  Polytropic Ideal Gas ................................ 293
    14.5  Entropy ............................................. 295
    14.6  Isothermal Flow ..................................... 298
    14.7  The Euler Equations in Primitive Variables .......... 298
    14.8  The Riemann Problem for the Euler Equations ......... 300
    14.9  Contact Discontinuities ............................. 301
    14.10 Riemann Invariants .................................. 302
    14.11 Solution to the Riemann Problem ..................... 302
    14.12 The Structure of Rarefaction Waves .................. 305
    14.13 Shock Tubes and Riemann Problems .................... 306
    14.14 Multifluid Problems ................................. 308
    14.15 Other Equations of State and Incompressible Flow .... 309

15  Finite Volume Methods for Nonlinear Systems ............... 311
    15.1  Godunov's Method .................................... 311
    15.2  Convergence of Godunov's Method ..................... 313
    15.3  Approximate Riemann Solvers ......................... 314
    15.4  High-Resolution Methods for Nonlinear Systems ....... 329
    15.5  An Alternative Wave-Propagation Implementation of 
          Approximate Riemann Solvers ......................... 333
    15.6  Second-Order Accuracy ............................... 335
    15.7  Flux-Vector Splitting ............................... 338
    15.8  Total Variation for Systems of Equations ............ 340
          Exercises ........................................... 348

16  Some Nonclassical Hyperbolic Problems ..................... 350
    16.1  Nonconvex Flux Functions ............................ 350
    16.2  Nonstrictly Hyperbolic Problems ..................... 358
    16.3  Loss of Hyperbolicity ............................... 362
    16.4  Spatially Varying Flux Functions .................... 368
    16.5  Nonconservative Nonlinear Hyperbolic Equations ...... 371
    16.6  Nonconservative Transport Equations ................. 372
          Exercises ........................................... 374

17  Source Terms and Balance Laws ............................. 375
    17.1  Fractional-Step Methods ............................. 377
    17.2  An Advection-Reaction Equation ...................... 378
    17.3  General Formulation of Fractional-Step Methods for
          Linear Problems ..................................... 384
    17.4  Strang Splitting .................................... 387
    17.5  Accuracy of Godunov and Strang Splittings ........... 388
    17.6  Choice of ODE Solver ................................ 389
    17.7  Implicit Methods, Viscous Terms, and Higher-Order
          Derivatives ......................................... 390
    17.8  Steady-State Solutions .............................. 391
    17.9  Boundary Conditions for Fractional-Step Methods ..... 393
    17.10 Stiff and Singular Source Terms ..................... 396
    17.11 Linear Traffic Flow with On-Ramps or Exits .......... 396
    17.12 Rankine-Hugoniot Jump Conditions at a Singular 
          Source .............................................. 397
    17.13 Nonlinear Traffic Flow with On-Ramps or Exits ....... 398
    17.14 Accurate Solution of Quasisteady Problems ........... 399
    17.15 Burgers Equation with a Stiff Source Term ........... 401
    17.16 Numerical Difficulties with Stiff Source Terms ...... 404
    17.17 Relaxation Systems .................................. 410
    17.18 Relaxation Schemes .................................. 415
          Exercises ........................................... 416

Part III  Multidimensional Problems

18  Multidimensional Hyperbolic Problems ...................... 421
    18.1  Derivation of Conservation Laws ..................... 421
    18.2  Advection ........................................... 423
    18.3  Compressible Flow ................................... 424
    18.4  Acoustics ........................................... 425
    18.5  Hyperbolicity ....................................... 425
    18.6  Three-Dimensional Systems ........................... 428
    18.7  Shallow Water Equations ............................. 429
    18.8  Euler Equations ..................................... 431
    18.9  Symmetry and Reduction of Dimension ................. 433
          Exercises ........................................... 434

19  Multidimensional Numerical Methods ........................ 436
    19.1  Finite Difference Methods ........................... 436
    19.2  Finite Volume Methods and Approaches to 
          Discretization ...................................... 438
    19.3  Fully Discrete Flux-Differencing Methods ............ 439
    19.4  Semidiscrete Methods with Runge-Kutta Time
          Stepping ............................................ 443
    19.5  Dimensional Splitting ............................... 444
          Exercise ............................................ 446

20  Multidimensional Scalar Equations ......................... 447
    20.1  The Donor-Cell Upwind Method for Advection .......... 447
    20.2  The Corner-Transport Upwind Method for Advection .... 449
    20.3  Wave-Propagation Implementation of the CTU Method ... 450
    20.4  von Neumann Stability Analysis ...................... 452
    20.5  The CTU Method for Variable-Coefficient Advection ... 453
    20.6  High-Resolution Correction Terms .................... 456
    20.7  Relation to the Lax-Wendroff Method ................. 456
    20.8  Divergence-Free Velocity Fields ..................... 457
    20.9  Nonlinear Scalar Conservation Laws .................. 460
    20.10 Convergence ......................................... 464
          Exercises ........................................... 467

21  Multidimensional Systems .................................. 469
    21.1  Constant-Coefficient Linear Systems ................. 469
    21.2  The Wave-Propagation Approach to Accumulating 
          Fluxes .............................................. 471
    21.3  CLAWPACK Implementation ............................. 473
    21.4  Acoustics ........................................... 474
    21.5  Acoustics in Heterogeneous Media .................... 476
    21.6  Transverse Riemann Solvers for Nonlinear Systems .... 480
    21.7  Shallow Water Equations ............................. 480
    21.8  Boundary Conditions ................................. 485

22  Elastic Waves ............................................. 491
    22.1  Derivation of the Elasticity Equations .............. 492
    22.2  The Plane-Strain Equations of Two-Dimensional
          Elasticity .......................................... 499
    22.3  One-Dimensional Slices .............................. 502
    22.4  Boundary Conditions ................................. 502
    22.5  The Plane-Stress Equations and Two-Dimensional 
          Plates .............................................. 504
    22.6  A One-Dimensional Rod ............................... 509
    22.7  Two-Dimensional Elasticity in Heterogeneous Media ... 509

23  Finite Volume Methods on Quadrilateral Grids .............. 514
    23.1  Cell Averages and Interface Fluxes .................. 515
    23.2  Logically Rectangular Grids ......................... 517
    23.3  Godunov's Method .................................... 518
    23.4  Fluctuation Form .................................... 519
    23.5  Advection Equations ................................. 520
    23.6  Acoustics ........................................... 525
    23.7  Shallow Water and Euler Equations ................... 530
    23.8  Using clawpack on Quadrilateral Grids ............... 531
    23.9  Boundary Conditions ................................. 534

Bibliography .................................................. 535

Index ......................................................... 553


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:38 2019. Размер: 24,194 bytes.
Посещение N 2332 c 16.11.2010