Borovik A.V. Mathematics under the microscope: notes on cognitive aspects of mathematical practice (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBorovik A.V. Mathematics under the microscope: notes on cognitive aspects of mathematical practice. - Providence: American Mathematical Society, 2010. - xxvi, 317 p.: ill. - Ref.: p.281-305. - Ind.: p.307-317. - ISBN 978-0-8218-4761-9
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xi
List of Figures ............................................. xxiii
List of Photographs ........................................... xxv

     Part I  Simple Things: How Structures of Human Cognition
                  Reveal Themselves in Mathematics

1  A Taste of Things to Come .................................... 3
   1.1  Simplest possible example ............................... 3
   1.2  Switches and flows: some questions for cognitive
        psychologists ........................................... 6
   1.3  Choiceless computation .................................. 7
        1.3.1  Polynomial time complexity ....................... 7
        1.3.2  Choiceless algorithms ............................ 9
   1.4  Analytic functions and the inevitability of choice ..... 10
   1.5  You name it—we have it ................................. 12
   1.6  Why are certain repetitive activities more 
        pleasurable than others? ............................... 15
   1.7  What lies ahead? ....................................... 18

2  What You See Is What You Get ................................ 23
   2.1  The starting point: mirrors and reflections ............ 23
   2.2  Image processing in humans ............................. 25
   2.3  A small triumph of visualization: Coxeter's proof
        of Euler's Theorem ..................................... 28
   2.4  Mathematics: interiorization and reproduction .......... 30
   2.5  How to draw an icosahedron on a blackboard ............. 33
   2.6  Self-explanatory diagrams .............................. 38

3  The Wing of the Hummingbird ................................. 43
   3.1  Parsing ................................................ 43
   3.2  Number sense and grammar ............................... 46
   3.3  What about music? ...................................... 48
   3.4  Palindromes and mirrors ................................ 49
   3.5  Parsing, continued: do brackets matter? ................ 52
   3.6  The mathematics of bracketing and Catalan numbers ...... 54
   3.7  The mystery of Hipparchus .............................. 57

4  Simple Things ............................................... 61
   4.1  Parables and fables .................................... 61
   4.2  Cryptomorphism ......................................... 66
        4.2.1  Israel Gelfand on languages and translation ..... 67
        4.2.2  Isadore Singer on the compression of language ... 68
        4.2.3  Cognitive nature of cryptomorphism .............. 69
   4.3  Some mathlets: order, numerals, symmetry ............... 70
        4.3.1  Order and numerals .............................. 70
        4.3.2  Ordered/unordered pairs ......................... 72
        4.3.3  Processes, sequences, time ...................... 74
        4.3.4  Symmetry ........................................ 74
   4.4  The line of sight and convexity ........................ 75
   4.5  Convexity and the sensorimotor intuition ............... 78
   4.6  Mental arithmetic and the method of Radzivilovsky ...... 81
   4.7  Not-so-simple arithmetic: "named" numbers .............. 82

5  Infinity and Beyond ......................................... 89
   5.1  Some visual images of infinity ......................... 89
   5.2  From here to infinity .................................. 92
   5.3  The Sand Reckoner and potential infinity ............... 97
   5.4  Achilles and the Tortoise ............................. 100
   5.5  The vanishing point ................................... 103
   5.6  How humans manage to lose to insects in mind games .... 106
   5.7  The nightmare of infinitely many (or just many) 
        dimensions ............................................ 109

6  Encapsulation of Actual Infinity ........................... 117
   6.1  Reification and encapsulation ......................... 117
   6.2  From potential to actual infinity ..................... 119
        6.2.1  Balls, bins, and the Axiom of Extensionality ... 120
        6.2.2  Following Cantor's footsteps ................... 123
        6.2.3  The art of encapsulation ....................... 123
        6.2.4  Can one live without actual infinity? .......... 124
        6.2.5  Finite differences and asymptotic at zero ...... 125
   6.3  Proofs by handwaving .................................. 126

                  Part II  Mathematical Reasoning

7  What Is It That Makes a Mathematician? ..................... 135
   7.1  Flies and elephants ................................... 135
   7.2  The inner dog ......................................... 138
   7.3  Reification on purpose ................................ 140
   7.4  Plato vs. Sfard ....................................... 143
   7.5  Multiple representation and de-encapsulation .......... 143
        7.5.1  Rearrangement of brackets ...................... 147
   7.6  The Economy Principle ................................. 148
   7.7  Hidden symmetries ..................................... 151
   7.8  The game without rules ................................ 153
   7.9  Winning ways .......................................... 155
   7.10 A dozen problems ...................................... 160
        7.10.1 Caveats ........................................ 160
        7.10.2 Problems ....................................... 161
        7.10.3 Comments ....................................... 163

8  "Kolmogorov's Logic" and Heuristic Reasoning ............... 169
   8.1  Hedy Lamarr: a legend from the golden era of moving
        pictures .............................................. 169
   8.2  Mathematics of frequency hopping ...................... 171
   8.3  "Kolmogorov's Logic" and heuristic reasoning .......... 173
   8.4  The triumph of the heuristic approach: Kolmogorov's
        "5/3" law ............................................. 178
   8.5  Morals drawn from the three stories ................... 181
   8.6  Women in mathematics .................................. 181

9  Recovery vs. Discovery ..................................... 187
   9.1  Memorize or rederive? ................................. 187
   9.2  Heron's formula ....................................... 189
   9.3  Limitations of recovery procedures .................... 190
   9.4  Metatheory ............................................ 192

10 The Line of Sight .......................................... 197
   10.1 The Post Office Conjecture ............................ 197
   10.2 Solutions ............................................. 202
   10.3 Some philosophy ....................................... 205
   10.4 But is the Post Office Conjecture true? ............... 207
   10.5 Keystones, arches, and cupolas ........................ 209
   10.6 Military applications ................................. 212

                  Part III  History and Philosophy

11 The Ultimate Replicating Machines .......................... 217
   11.1 Mathematics: reproduction, transmission, error 
        correction ............................................ 219
   11.2 The Babel of mathematics .............................. 220
   11.3 The nature and role of mathematical memes ............. 222
   11.4 Mathematics and Origami ............................... 228
   11.5 Copying by squares .................................... 231
   11.6 Some stumbling blocks ................................. 235
        11.6.1 Natural language and music ..................... 235
        11.6.2 Mathematics and the natural sciences ........... 235
        11.6.3 Genotype and phenotype ......................... 236
        11.6.4 Algorithms of the brain ........................ 236
        11.6.5 Evolution of mathematics ....................... 237
   11.7 Mathematics as a proselytizing cult ................... 238
   11.8 Fancy being Euclid? ................................... 240

12 The Vivisection of the Cheshire Cat ........................ 247
   12.1 A few words on philosophy ............................. 247
   12.2 The little green men from Mars ........................ 251
   12.3 Better Than Life ...................................... 252
   12.4 The vivisection of the Cheshire Cat ................... 253
   12.5 A million dollar question ............................. 256
   12.6 The boring, boring theory of snooks ................... 260
        12.6.1 Why are some mathematical objects more 
               important than others? ......................... 260
        12.6.2 Are there many finite snooks around? ........... 262
        12.6.3 Snooks, snowflakes, Kepler, and Pálfy .......... 264
        12.6.4 Hopf algebras .................................. 267
        12.6.5 Back to ontological commitment ................. 270
   12.7 Zilber's Field ........................................ 271
   12.8 Explication of (in)explicitness ....................... 273
   12.9 Testing times ......................................... 276

References .................................................... 281

Index ......................................................... 307


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:38 2019. Размер: 13,188 bytes.
Посещение N 1787 c 16.11.2010