1 Introduction ................................................. 5
2 Principles of X-ray diffraction .............................. 8
2.1 Dynamical opposed to kinematical theory ................. 8
2.2 Kinematical theory of X-ray diffraction ................ 12
2.3 Dynamical diffraction by ideal crystals ................ 16
2.4 Dynamical diffraction by distorted crystals ............ 20
2.5 X-ray extinction phenomena ............................. 23
2.5.1 Mosaic crystal model for crystals with
dislocations .................................... 34
2.5.2 Significant considerations of primary X-ray
extinction in crystals with randomly
distributed dislocations ........................ 36
2.6 Principles of statistical dynamical diffraction
theory ................................................. 42
2.6.1 Statistical description of random displacement
fields .......................................... 44
2.6.2 Statistical description of intensity ............ 46
3 Materials and experimental procedures ....................... 54
3.1 Materials under study .................................. 54
3.2 X-ray diffraction technique ............................ 55
3.3 Principles of the electron back-scatter diffraction
technique .............................................. 58
4 Analysis of homogeneously distributed dislocations in
crystals via primary X-ray extinction models ................ 61
4.1 Verification of the IKS procedure ...................... 61
4.1.1 A stochastic solution of dislocation-induced
displacement field by means of shot-noise
random simulations .............................. 62
4.2 Application of the IKS procedure to metallic crystals
with dislocations ...................................... 67
4.3 Improvement of the procedures based on a
renormalisation of static Debye-Waller factor .......... 74
4.3.1 Verification of the Olekhnovich consideration ... 74
4.3.2 Improvement of the Molodkin procedure ........... 75
4.4 Conclusions ............................................ 78
5 Analysis of mhomogeneously distributed dislocations in
crystals via secondary X-ray extinction models .............. 79
5.1 X-ray extinction changes due to dislocation
arrangements ........................................... 79
5.2 X-ray extinction changes due to mixed dislocation
structure .............................................. 89
5.3 Conclusions ............................................ 92
6 Outline of statistical treatment of X-ray dynamical
diffraction in crystals with dislocations ................... 93
6.1 Modification of integrated intensity for thick
crystals ............................................... 93
6.2 Correlation length for homogeneously distributed
dislocations ........................................... 94
6.3 Correlation length for inhomogeneously distributed
dislocations ........................................... 97
6.3.1 Correlation length for misorientations .......... 97
6.3.2 Verification of the block model ................. 99
6.3.3 Correlation length for mixed structure ......... 100
6.4 Conclusions ........................................... 101
7 Examination of statistical treatment of X-ray dynamical
diffraction in crystals with homogeneously distributed
dislocations ............................................... 102
7.1 Use of statistical treatment for analysis of mixed
structures consisting of blocks and homogeneously
distributed dislocations .............................. 109
7.2 Conclusions ........................................... 112
8 Implementation of statistical treatment of X-ray
diffraction to crystals with inhomogeneously distributed
dislocations ............................................... 113
8.1 Relation of integrated intensity to misorientations ... 113
8.2 Examination of statistical treatment in crystals
with inhomogeneously distributed dislocations ......... 113
8.3 Conclusions ........................................... 120
9 Analysis of lattice distortions caused by large
deformations using a combination of X-ray and electron
diffraction ................................................ 121
9.1 Analysis of lattice distortions in Ni single
crystals .............................................. 124
9.1.1 Strain characterisation in Ni single
crystals ....................................... 124
9.1.2 Analysis of lattice misorientations in
distorted Ni single crystals ................... 128
9.1.3 Strain-induced chord-length evolution in Ni
single crystals ................................ 134
9.2 Analysis of lattice distortion in Al polycrystals ..... 135
9.2.1 Strain development in compression .............. 135
9.2.2 Lattice misorientation evolution in Al
polycrystals in compression .................... 138
9.2.3 Chord lengths of the meso-scale substructure
in Al polycrystals ............................. 141
9.3 Conclusions ........................................... 142
10 Summary and Conclusions .................................... 144
References ................................................. 150
Acknowledgments ............................................... 156
|