Nonporous inorganic membranes: for chemical processing (Weinheim, 2006). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNonporous inorganic membranes: for chemical processing / ed. by A.F.Sammells, M.V.Mundschau. - Weinheim: Wiley-VCH, 2006. - xiv, 277 p.: ill. - Incl. bibl. ref. - Ind.: p.265-277. - ISBN-10 3-527-31342-7; ISBN-13 978-3-527-31342-6
 

Место хранения: 031 | Институт катализа им. Г.К.Борескова CO РАН | Новосибирск

Оглавление / Contents
 
   Preface ..................................................... XI
   List of Contributors ...................................... XIII

1  Dense Ceramic Membranes for Hydrogen Separation .............. 1
   Truls Norby and Reidar Haugsrud
   1.1  Introduction ............................................ 1
   1.2  Applications and Principles of Operation ................ 2
        1.2.1  Simple Cases ..................................... 2
        1.2.2  Examples of More Complex Applications ............ 4
   1.3  Defect Chemistry of Dense Hydrogen-permeable Ceramics ... 5
        1.3.1  Materials Classes ................................ 5
        1.3.2  Neutral and Ionized Hydrogen Species in Oxides ... 6
        1.3.4  Protonic Defects and Their Transport ............. 7
        1.3.5  Defect Structures of Proton-conducting Oxides .... 8
        1.3.6  Diffusivity, Mobility and Conductivity The
               Nernst-Einstein Relation ........................ 10
   1.4  Wagner Transport Theory for Dense Ceramic Hydrogen-
        Separation Membranes ................................... 11
        1.4.1  General Expressions ............................. 11
        1.4.2  From Charged to Well-Defined Species: The
               Electrochemical Equilibrium ..................... 12
        1.4.3  The Voltage Over a Sample ....................... 12
        1.4.4  Flux of a Particular Species .................... 13
        1.4.5  Fluxes in a Mixed Proton, Oxygen Ion, and
               Electron Conductor .............................. 14
        1.4.6  Fluxes in a Mixed Proton and Electron
               Conductor ....................................... 15
        1.4.7  Fluxes in a Mixed Proton and Oxygen Ion
               Conductor ....................................... 18
        1.4.8  Fluxes in a Mixed Proton, Oxygen Ion, and
               Electron Conductor Revisited .................... 19
        1.4.9  Permeation of Neutral Hydrogen Species .......... 19
        1.4.10 What About Hydride Ions? ........................ 21
   1.5  Surface Kinetics of Hydrogen Permeation in Mixed
        Proton-Electron Conductors ............................. 21
   1.6  Issues Regarding Metal Cation Transport in Hydrogen-
        permeable Membrane Materials ........................... 24
   1.7  Modeling Approaches .................................... 24
   1.8  Experimental Techniques and Challenges ................. 26
        1.8.1  Investigation of Fundamental Materials
               Properties ...................................... 26
               1.8.1.1  Concentration .......................... 26
               1.8.1.2  Diffusion .............................. 27
               1.8.1.3  Conductivity ........................... 27
               1.8.1.4  Transport Numbers ...................... 29
               1.8.1.5  Other Properties ....................... 30
        1.8.2  Investigation of Surface Kinetics ............... 31
        1.8.3  Measurements and Interpretation of Hydrogen
               Permeation ...................................... 34
   1.9  Hydrogen Permeation in Selected Systems ................ 35
        1.9.1  A Few Words on Flux and Permeability ............ 35
        1.9.2  Classes of Membranes ............................ 36
        1.9.3  Mixed Proton-Electron Conducting Oxides ......... 36
        1.9.4  Cermets ......................................... 42
        1.9.5  Permeation in Other Oxide Classes and the
               Possibility of Neutral Hydrogen Species ......... 43
        1.9.6  Comparison with Metals .......................... 44
   1.10 Summary ................................................ 45

2  Ceramic Proton Conductors ................................... 49
   Vineet K. Gupta and Jerry Y.S. Lin
   2.1  Introduction ........................................... 49
   2.2  General Properties of Perovskite-structured
        Proton-conducting Ceramic Membranes .................... 51
        2.2.1  Creation of Protonic Carriers ................... 51
        2.2.2  Transport Properties ............................ 52
        2.2.3  Electronic Conductivity and Its Improvement ..... 57
   2.3  Synthesis of Proton-conducting Ceramic Membranes ....... 58
        2.3.1  Synthesis of Powders ............................ 58
        2.3.2  Effect of Synthesis Conditions on Membrane
               Performance ..................................... 59
        2.3.3  Preparation of Thin Films ....................... 60
   2.4  Hydrogen Permeation .................................... 61
        2.4.1  The H2 Permeation Set-up and Sealing System ..... 61
        2.4.2  Effects of Process Variables on H2 Flux ......... 63
               2.4.2.1  Effect of Feed and Sweep Side Gas
                        Concentrations ......................... 63
               2.4.2.2  Effect of Membrane Thickness ........... 64
               2.4.2.3  Effect of Temperature .................. 65
        2.4.3  Mathematical Models for Hydrogen Permeation ..... 66
   2.5  Chemical Stability of Protonic Conductors .............. 68
        2.5.1  Stability in CO2 Atmospheres .................... 68
        2.5.2  Stability in Moisture-containing Atmospheres .... 71
        2.5.3  Stability in Reducing Atmospheres ............... 71
   2.6  Future Directions and Perspectives ..................... 72

3  Palladium Membranes ......................................... 77
   Stephen N. Paglieri
   3.1  Introduction ........................................... 77
   3.2  History and Applications ............................... 78
   3.3  Effect of Impurities ................................... 79
   3.4  Palladium Alloy Membranes .............................. 81
   3.5  Palladium Deposition Methods ........................... 82
   3.6  Membrane Characterization and Analysis ................. 84
   3.7  Palladium Composite Membranes .......................... 87
   3.8  Recent Advances ........................................ 89
   3.9  Summary and Outlook .................................... 93

4  Superpermeable Hydrogen Transport Membranes ................ 107
   Michael V. Mundschau, Xiaobing Xie, and Carl R. Evenson IV
   4.1  Introduction .......................................... 107
   4.2  Theoretical Limits of Superpermeable Membranes ........ 109
   4.3  Superpermeable Membranes in Plasma Physics ............ 111
   4.4  Hydrogen Transport Membranes in Nuclear Reactor
        Cooling Systems ....................................... 112
   4.5  Hydrogen Transport Membranes in the Chemical
        Industry .............................................. 114
   4.6  Membrane Hydrogen Dissociation Catalysts and
        Protective Layers ..................................... 116
   4.7  Thermal and Chemical Expansion ........................ 119
   4.8  Methods of Catalyst Application ....................... 121
   4.9  Catalyst Tolerance to Sulfur .......................... 124
   4.10 Interdiffusion ........................................ 125
   4.11 Measured Hydrogen Permeability of Bulk Membrane
        Materials ............................................. 126
   4.12 Conclusions ........................................... 136

5  Engineering Scale-up for Hydrogen Transport Membranes ...... 139
   David J. Edlund
   5.1  Historical Review ..................................... 140
   5.2  General Review of Hydrogen-permeable Metal Membranes
        and Module Design ..................................... 141
        5.2.1  Scale-up and Differential Expansion ............ 142
        5.2.2  Overview of Sealing Methods .................... 146
   5.3  Scale-up from Laboratory Test-and-Evaluation Module
        to Commercial Membrane Module ......................... 147
        5.3.1  Cost and Membrane Thickness .................... 149
        5.3.2  Module Maintenance and Operating Costs ......... 152
        5.3.3  Overview of Membrane Fabrication Methods ....... 152
   5.4  Membrane Module Design and Construction ............... 153
        5.4.1  Design of the Module Shell ..................... 159
        5.4.2  Membrane Sealing Options ....................... 160
        5.4.3  Commercial Applicability ....................... 163

6  The Evolution of Materials and Architecture for Oxygen
   Transport Membranes ........................................ 165
   John Sirman
   6.1  Introduction .......................................... 165
   6.2  Oxygen Separation and Collection ...................... 165
        6.2.1  Background for Selection of Materials for
               Oxygen Separation and Collection ............... 166
        6.2.2  Membrane Materials Concepts .................... 168
        6.2.3  Membrane Architecture Concepts ................. 174
        6.2.4  Summary of Oxygen Separation Materials and
               Architecture ................................... 180
   6.3  Syngas Production and Combustion Applications ......... 180
        6.3.1  Background for Selection of Materials for
               Syngas Production and Combustion
               Applications ................................... 180
        6.3.2  Membrane Materials Concepts .................... 182
        6.3.3  Membrane Architecture Concepts ................. 183
        6.3.4  Summary of Syngas and Combustion Applications
               Materials and Architecture ..................... 184

7  Membranes for Promoting Partial Oxidation Chemistries ...... 185
   Anthony F. Sammells, James H. White, and Richard Mackay
   7.1  Introduction .......................................... 185
   7.2  On the Nature of Perovskite-related Metal Oxides for
        Achieving Mixed Oxygen Anion and Electron
        Conduction ............................................ 188
        7.2.1  Background ..................................... 188
        7.2.2  Early Work towards the Selection of Mixed
               Conductors ..................................... 189
        7.2.3  Requirements for Oxygen Anion and Electronic
               Conduction within Perovskites .................. 189
        7.2.4  Empirical Factors Relating to Oxygen Anion
               Transport in Perovskite-related Membranes ...... 191
        7.2.5  Introducing Electronic Conductivity into
               a Perovskite-related Lattice ................... 192
   7.3  The Application of Oxygen Transport Membranes to
        Partial Oxidation Chemistries ......................... 193
        7.3.1  Natural Gas Conversion to Synthesis Gas -
               General Considerations ......................... 193
        7.3.2  Methane Partial Oxidation to Synthesis Gas in
               Membrane Reactors .............................. 196
        7.3.3  Liquid Fuel Reforming .......................... 198
        7.3.4  Coal/Biomass to Synthesis Gas .................. 200
        7.3.5  Oxygen Reduction Catalysis Requirements in
               Oxygen Transport Membranes ..................... 202
        7.3.6  Methane to Ethylene ............................ 203
        7.3.7  Catalysis Considerations for Promoting
               Methane Coupling Reactions ..................... 204
        7.3.8  Catalyst Implementation on Dense Oxygen
               Transport Media for Oxidative Coupling ......... 206
        7.3.9  Alkane Dehydrogenation ......................... 206
        7.3.10 Hydrogen Sulfide Partial Oxidation ............. 207
        7.3.11 Some Thoughts on the Potential Contribution
               of Membrane Technology towards Realizing
               a Hydrogen Economy ............................. 209

8  Syngas Membrane Engineering Design and Scale-Up Issues.
   Application of Ceramic Oxygen Conducting Membranes ......... 215
   Michael Carolan
   8.1  Membrane Design and Engineering ....................... 216
   8.2  Reactor Design and Engineering ........................ 227
   8.3  Planar Membrane Reactors .............................. 232
   8.4  Ceramic-to-Ceramic Seals .............................. 235
   8.5  Ceramic-to-Metal Seals ................................ 238
   8.6  Summary and Conclusions ............................... 241

9  Economics Associated with Implementation of Membrane
   Reactors ................................................... 245
   Alessandra Criscuoli
   9.1  Introduction .......................................... 245
   9.2  Membrane Reactors ..................................... 246
   9.3  Factors Influencing the Economics ..................... 249
   9.4  Dense Membrane Reactors for the Water-Gas Shift
        Reaction .............................................. 251
   9.5  Economic Feasibility of Water-Gas Shift Pd-based
        Membrane Reactors ..................................... 256
   9.6  Future Directions ..................................... 261

   Index ...................................................... 265


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:28 2019. Размер: 17,035 bytes.
Посещение N 1888 c 05.10.2010