Comba P. Molecular modeling of inorganic compounds (Weinheim, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаComba P. Molecular modeling of inorganic compounds / Comba P., Hambley T.W., Martin B. - 3rd completely rev. and enlarged ed. - Weinheim: Wiley-VCH, 2009. - xviii, 326 p.: ill. + 1 CD-ROM. - Ref.: p.305-321. - Ind.: p.323-326. - ISBN 978-3-527-31-799-8
 

Оглавление / Contents
 
Preface to the Third Edition ................................. XIII
Preface to the Second Edition .................................. XV
Preface to the First Edition ................................. XVII

I   Theory ...................................................... 1

1   Introduction ................................................ 3
    1.1   Molecular Modeling .................................... 3
    1.2   Historical Background ................................. 6
2   Molecular Modeling Methods in Brief ......................... 9
    2.1   Molecular Mechanics ................................... 9
    2.2   Quantum Mechanics .................................... 11
          2.2.1   Hartree-Fock Calculations .................... 12
          2.2.2   Semi-Empirical Approaches .................... 13
          2.2.3   Density Functional Theory .................... 13
          2.2.4   Methods and Basis Sets ....................... 14
    2.3   Other Methods ........................................ 15
          2.3.1   Conformational Searching ..................... 15
                  2.3.1.1   Stochastic Methods ................. 15
                  2.3.1.2   Molecular Dynamics ................. 15
          2.3.2   Database Searching ........................... 16
          2.3.3   Cluster Analysis ............................. 16
          2.3.4   Free Energy Perturbation ..................... 17
          2.3.5   QSAR ......................................... 17
3   Parameterization, Approximations and Limitations
    of Molecular Mechanics ..................................... 19
    3.1   Concepts ............................................. 19
    3.2   Potential Energy Functions ........................... 23
          3.2.1   Bond Length Deformation ...................... 25
          3.2.2   Valence Angle Deformation .................... 27
          3.2.3   Torsion Angle Deformation .................... 31
          3.2.4   Cross-Terms .................................. 33
          3.2.5   van der Waals Interactions ................... 33
          3.2.6   Electrostatic Interactions ................... 35
          3.2.7   Hydrogen Bonding Interactions ................ 37
          3.2.8   Out-of-Plane Deformation ..................... 38
    3.3   Force-Field Parameters ............................... 38
          3.3.1   Bond Length Deformation ...................... 42
          3.3.2   Valence Angle Deformation .................... 43
          3.3.3   Torsion Angle Deformation .................... 45
          3.3.4   Out-of-Plane Deformation ..................... 47
          3.3.5   Non-Bonded Interactions ...................... 48
          3.3.6   Electrostatic Interactions ................... 49
          3.3.7   Hydrogen-Bonding Interactions ................ 50
    3.4   Spectroscopic Force Fields ........................... 50
    3.5   Model and Reality .................................... 52
    3.6   Electronic Effects ................................... 53
    3.7   The Environment ...................................... 55
    3.8   Entropy Effects ...................................... 57
    3.9   Summary .............................................. 58
4   Computation ................................................ 62
    4.1   Input and Output ..................................... 61
    4.2   Energy Minimization .................................. 63
          4.2.1   The Simplex Method ........................... 65
          4.2.2   Gradient Methods ............................. 65
          4.2.3   Conjugate-Gradient Methods ................... 66
          4.2.4   The Newton-Raphson Method .................... 66
          4.2.5   Least-Squares Methods ........................ 67
    4.3   Constraints and Restraints ........................... 67
5   The Multiple Minima Problem ................................ 69
    5.1   Deterministic Methods ................................ 70
    5.2   Stochastic Methods ................................... 70
    5.3   Molecular Dynamics ................................... 71
    5.4   Practical Considerations ............................. 72
    5.5   Making Use of Experimental Data ...................... 73
6   Conclusions ................................................ 75

II   Applications .............................................. 77

7   Structural Aspects ......................................... 79
    7.1   Accuracy of Structure Prediction ..................... 79
    7.2   Molecular Visualization .............................. 80
    7.3   Isomer Analysis ...................................... 82
    7.4   Analysis of Structural Trends ........................ 83
    7.5   Prediction of Complex Polymerization ................. 84
    7.6   Unraveling Crystallographic Disorder ................. 84
    7.7   Enhanced Structure Determination ..................... 86
    7.8   Comparison with Solution Properties .................. 88
8   Stereoselectivities ........................................ 89
    8.1   Conformational Analysis .............................. 89
    8.2   Enantioselectivities ................................. 92
          8.2.1   Racemate Separation .......................... 93
          8.2.2   Stereoselective Synthesis .................... 95
          8.2.3   Prediction of Enantioinduction ............... 98
    8.3   Structure Evaluation ................................ 100
    8.4   Mechanistic Information ............................. 105
9   Metal Ion Selectivity ..................................... 111
    9.1   Chelate Ring Size ................................... 112
    9.2   Macrocycle Hole Size ................................ 116
    9.3   Preorganization ..................................... 120
    9.4   Quantitative Correlations Between Strain and
          Stability Differences ............................... 123
10  Spectroscopy .............................................. 127
    10.1  Vibrational Spectroscopy ............................ 128
    10.2  Electronic Spectroscopy ............................. 129
    10.3  EPR Spectroscopy .................................... 141
    10.4  NMR Spectroscopy .................................... 147
    10.5  QM-Based Methods .................................... 148
11  Electron Transfer ......................................... 149
    11.1  Redox Potentials .................................... 151
    11.2  Electron-Transfer Rates ............................. 154
12  Electronic Effects ........................................ 159
    12.1  d-Orbital Directionality ............................ 160
    12.2  The trans Influence ................................. 163
    12.3  Jahn-Teller Distortions ............................. 164
13  Bioinorganic Chemistry .................................... 171
    13.1  Complexes of Amino Acids and Peptides ............... 171
    13.2  Metalloproteins ..................................... 172
    13.3  Metalloporphyrins ................................... 175
    13.4  Metal-Nucleotide and Metal-DNA Interactions ......... 177
    13.5  Other Systems ....................................... 179
    13.6  Conclusions ......................................... 181
14  Organometallics ........................................... 183
    14.1  Metallocenes ........................................ 184
    14.2  Transition Metal-Allyl Systems ...................... 188
    14.3  Transition Metal-Phosphine Compounds ................ 188
    14.4  Metal-Metal Bonding ................................. 190
    14.5  Carbonyl Cluster Compounds .......................... 192
15  Compounds with s-, p-, and f-Block Elements ............... 195
    15.1  Alkali and Alkaline Earth Metals .................... 195
          15.1.1  Crown Ethers ................................ 195
          15.1.2  Cryptands ................................... 196
          15.1.3  Spherands ................................... 197
          15.1.4  Biologically Relevant Ligands ............... 197
    15.2  Main Group Elements ................................. 198
    15.3  Lanthanoids and Actinoids ........................... 199
    15.4  Conclusions ......................................... 201

III  Practice of Molecular Mechanics .......................... 203

16  The Model, the Rules, and the Pitfalls .................... 205
    16.1  Introduction ........................................ 205
    16.2  The Starting Model .................................. 205
    16.3  The Force Field ..................................... 206
    16.4  The Energy Minimization Procedure ................... 207
    16.5  Local and Global Energy Minima ...................... 210
    16.6  Pitfalls, Interpretation, and Communication ......... 211
17  Tutorial .................................................. 215
    17.1  Introduction to the МотесЗ Program .................. 216
          17.1.1  Motivation and Rationale .................... 216
          17.1.2  The Program Setup and Philosophy ............ 217
    17.2  Building a Simple Metal Complex ..................... 220
          17.2.1  Theory ...................................... 220
          17.2.2  Practice .................................... 221
    17.3  Optimizing the Structure ............................ 222
          17.3.1  Theory ...................................... 222
          17.3.2  Practice .................................... 226
    17.4  Building a Set of Conformers ........................ 228
          17.4.1  Theory ...................................... 228
          17.4.2  Practice .................................... 229
                  17.4.2.1  Building [Co(en)3]3+ .............. 229
                  17.4.2.2  Changing Conformations ............ 230
          17.4.3  Exercise .................................... 231
    17.5  Calculating the Strain Energies and Isomer
          Distribution of a Set of Conformers ................. 231
          17.5.1  Theory ...................................... 231
          17.5.2  Practice .................................... 232
          17.5.3  Exercise .................................... 233
    17.6  Constructing and Optimizing a Set of Isomers
          Automatically ....................................... 233
          17.6.1  Theory ...................................... 233
          17.6.2  Practice .................................... 234
          17.6.3  Exercise .................................... 234
    17.7  Building More Difficult Metal Complexes ............. 235
          17.7.1  Theory ...................................... 235
          17.7.2  Practice .................................... 235
                  17.7.2.1  Importing Structures from Other
                            Sources ........................... 235
                  17.7.2.2  Building Fragments ................ 236
          17.7.3  Exercise .................................... 237
    17.8  Analyzing Structures ................................ 237
          17.8.1  Theory ...................................... 237
          17.8.2  Practice .................................... 237
          17.8.3  Exercise .................................... 239
    17.9  Potential Energy Functions I: Bond Length, Valence
          Angle, Torsion Angle, Twist Angle, and
          Out-of-Plane Deformation Functions .................. 239
          17.9.1  Theory ...................................... 239
          17.9.2  Practice .................................... 240
                  17.9.2.1  Bond Length Deformation ........... 241
                  17.9.2.2  Valence Angle Deformation ......... 242
                  17.9.2.3  Out-of-Plane Deviations ........... 243
                  17.9.2.4  Torsion Angle or Dihedral Angle
                            Functions ......................... 243
          17.9.3  Exercise .................................... 246
    17.10 Potential Energy Functions II: Non-Bonded
          Interactions ........................................ 246
          17.10.1 Theory ...................................... 246
                  17.10.1.1  van der Waals Interactions ....... 247
          17.10.2 Practice .................................... 247
          17.10.3 Theory ...................................... 248
                  17.10.3.1 Hydrogen Bonds .................... 248
          17.10.4 Practice .................................... 249
          17.10.5 Theory ...................................... 249
                  17.10.5.1  Electrostatic Interactions ....... 249
          17.10.6 Practice .................................... 250
          17.10.7 Exercise .................................... 251
    17.11 Force-Field Parameters I: Developing a Force Field
          for Cobalt(III) Hexaamines - Normal Bond
          Distances ........................................... 251
          17.11.1 Theory ...................................... 251
          17.11.2 Practice .................................... 254
          17.11.3 Exercise .................................... 255
    17.12 Force-Field Parameters II: Refining the New Force
          Field - Very Short Bond Distances ................... 256
          17.12.1 Theory ...................................... 256
          17.12.2 Practice .................................... 257
          17.12.3 Exercise .................................... 258
    17.13 Force-Field Parameters III: Refining the New Force
          Field - Very Long Bond Distances .................... 259
          17.13.1 Theory ...................................... 259
          17.13.2 Practice .................................... 259
          17.13.3 Exercise .................................... 261
          17.13.4 Exercise .................................... 261
    17.14 Force-Field Parameters IV: Comparison of Isomer
          Distributions Using Various Cobalt(III) Amine
          Force Fields ........................................ 262
          17.14.1 Theory ...................................... 262
          17.14.2 Practice .................................... 263
          17.14.3 Exercise .................................... 266
    17.15 Force-Field Parameters V: Parameterizing a New
          Potential - The Terrahedral Twist of Four-
          Coordinate Compounds ................................ 266
          17.15.1 Theory ...................................... 266
          17.15.2 Practice .................................... 268
          17.15.3 Exercise .................................... 269
    17.16 Using Constraints to Compute Energy Barriers ........ 269
          17.16.1 Theory ...................................... 269
          17.16.2 Practice .................................... 270
          17.16.3 Exercise .................................... 272
    17.17 Using Constraints to Compute Macrocyclic Ligand
          Hole Sizes .......................................... 272
          17.17.1 Theory ...................................... 272
          17.17.2 Practice .................................... 275
          17.17.3 Exercise .................................... 279
    17.18 Cavity Sizes of Unsymmetrical Ligands ............... 280
          17.18.1 Theory ...................................... 280
          17.18.2 Practice .................................... 281
          17.18.3 Exercise .................................... 282
    17.19 Using Strain Energies to Compute Reduction
          Potentials of Coordination Compounds ................ 282
          17.19.1 Theory ...................................... 282
          17.19.2 Practice .................................... 285
          17.19.3 Exercise .................................... 287
    17.20 Using Force-Field Calculations with NMR Data ........ 288
          17.20.1 Theory ...................................... 288
          17.20.2 Practice .................................... 288
          17.20.3 Exercise .................................... 290
    17.21 Optimizing Structures with Rigid Groups ............. 290
          17.21.1 Theory ...................................... 290
          17.21.2 Practice .................................... 291
          17.21.3 Exercise .................................... 292

Appendix 1:  Glossary ......................................... 293
Appendix 2:  Fundamental Constants, Units, and Conversion
    Factors ................................................... 297
    A2.1  Constants ........................................... 297
    A2.2  Basic SI Units ...................................... 297
    A2.3  Derived Units and Conversion Factors ................ 298
    A2.4  Energy Units in Molecular Mechanics Calculations .... 298
Appendix 3:  Software and Force Fields ........................ 299
Appendix 4:  Books on Molecular Modeling and Reviews on
    norganic Molecular Modeling ............................... 301
    A4.1  List of Books on Molecular Modeling ................. 301
    A4.2  List of Reviews in the Field of Inorganic
          Molecular Modeling .................................. 302
    A4.3  List of Publications on the Momec Force Field ....... 304

References .................................................... 305
Index ......................................................... 323


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:21:08 2019. Размер: 21,492 bytes.
Посещение N 2285 c 22.06.2010