Memoirs of the American Mathematical Society; Vol.203, N 954 (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThermodynamical formalism and multifractal analysis for meromorphic functions of finite order / Mayer V., Urbanski M. - Providence: American Mathematical Society, 2010. - 107 p. - (Memoirs of the American Mathematical Society; Vol.203, N 954). - ISBN 978-0-8218-4659-9; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction ......................................... 1

Chapter 2. Balanced functions ................................... 5

2.1. Growth conditions .......................................... 5
2.2. The precise form of α2 ..................................... 6
2.3. Classical families ......................................... 7
2.4. Functions with polynomial Schwarzian derivative ............ 8
2.5. Functions with rational Schwarzian derivative ............. 10
2.6. Uniform balanced growth ................................... 11

Chapter 3. Transfer operator and Nevanlinna Theory ............. 13

3.1. Choice of a Riemannian metric and transfer operator ....... 13
3.2. Nevanlinna Theory and Borel Sums .......................... 14

Chapter 4. Preliminaries, Hyperbolicity and Distortion 
           Properties .......................................... 17

4.1. Dynamical preliminaries and hyperbolicity ................. 17
4.2. Distortion properties ..................................... 20
4.3. Holder functions and dynamical Holder property ............ 21

Chapter 5. Perron-Probenius Operators and Generalized 
           Conformal Measures .................................. 23

5.1. Tame potentials ........................................... 23
5.2. Growth condition and cohomological Perron-Probenius
     operator .................................................. 24
5.3. Topological pressure and existence of conformal
     measures .................................................. 25
5.4. Thermodynamical formalism ................................. 28
5.5. The support and uniqueness of the conformal measure ....... 31

Chapter 6. Finer properties of Gibbs States .................... 35

6.1. The two norm inequality and the spectral gap .............. 35
6.2. Ergodic properties of Gibbs states ........................ 39
6.3. Decay of correlations and Central Limit Theorem ........... 41
6.4. Cohomologies and σ2 = 0 ................................... 45
6.5. Variational principle ..................................... 49

Chapter 7. Regularity of Perron-Frobenius Operators and 
           Topological Pressure ................................ 55

7.1. Analyticity of Perron-Frobenius operators ................. 55
7.2. Analyticity of pressure ................................... 58
7.3. Derivatives of the pressure function ...................... 60

Chapter 8. Multifractal analysis ............................... 79

8.1. Hausdorff dimension of Gibbs states ....................... 79
8.2. The temperature function .................................. 82
8.3. Multifractal analysis ..................................... 86

Chapter 9. Multifractal Analysis of Analytic Families of 
           Dynamically Regular Functions ....................... 91

9.1. Extensions of harmonic functions .......................... 91
9.2. Holomorphic families and quasi-conformal conjugacies ...... 93
9.3. Real analyticity of the multifractal function ............. 95

Bibliography .................................................. 103

Index ......................................................... 107


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:58 2019. Размер: 6,967 bytes.
Посещение N 1666 c 04.05.2010