Memoirs of the American Mathematical Society; vol.204, N959 (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPelayo A. Symplectic actions of 2-tori on 4-manifolds. - Providence: American Mathematical Society, 2010. - vii, 81 p. - (Memoirs of the American Mathematical Society; Vol.204, N 959). - Bibliogr.: p.79-81. - ISBN 978-0-8218-4713-8; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Acknowledgements ................................................ v

Chapter 1. Introduction ......................................... 1

Chapter 2. The orbit space ...................................... 5

2.1. Symplectic form on the T-orbits ............................ 5
2.2. Stabilizer subgroup classification ......................... 6
2.3. Orbifold structure of M/T .................................. 8
2.4. A flat connection for the projection M → M/T .............. 11
2.5. Symplectic tube theorem ................................... 12

Chapter 3. Global model ........................................ 15

3.1. Orbifold coverings of M/T ................................. 15
3.2. Symplectic structure on M/T ............................... 16
3.3. Model of (M, σ): Definition ............................... 17
3.4. Model of (M, σ): Proof .................................... 19

Chapter 4. Global model up to equivariant diffeomorphisms ..... 25

4.1. Generalization of Kahn's theorem .......................... 25
4.2. Smooth equivariant splittings ............................. 25
4.3. Alternative model ......................................... 28

Chapter 5. Classification: Free case ........................... 31

5.1. Monodromy invariant ....................................... 31
5.2. Uniqueness ................................................ 35
5.3. Existence ................................................. 38
5.4. Classification theorem .................................... 40

Chapter 6. Orbifold homology and geometric mappings ............ 43

6.1. Geometric torsion in homology of orbifolds ................ 43
6.2. Geometric isomorphisms .................................... 44
6.3. Symplectic and torsion geometric maps ..................... 46
6.4. Geometric isomorphisms: Characterization .................. 46

Chapter 7. Classification ...................................... 51

7.1. Monodromy invariant ....................................... 51
7.2. Uniqueness ................................................ 54
7.3. Existence ................................................. 55
7.4. Classification theorem .................................... 59

Chapter 8. The four-dimensional classification ................. 61

8.1. Two families of examples .................................. 61
8.2. Classification statement .................................. 62
8.3. Proof of Theorem 8.2.1 .................................... 64
8.4. Corollaries of Theorem 8.2.1 .............................. 69

Chapter 9. Appendix: (sometimes symplectic) orbifolds .......... 71

9.1. Bundles, connections ...................................... 71
9.2. Coverings ................................................. 72
9.3. Differential and symplectic forms ......................... 75
9.4. Orbifold homology, Hurewicz map ........................... 75
9.5. Classification of orbisurfaces ............................ 76
9.1. Bibliography .............................................. 79


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:58 2019. Размер: 6,769 bytes.
Посещение N 1727 c 04.05.2010