Memoirs of the American Mathematical Society; vol.204, N960 (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAlvarez O. Ergodicity, stabilization, and singular perturbations for Bellman-Isaacs equations / Alvarez O., Bardi M. - Providence: American Mathematical Society, 2010. - v, 77 p. - (Memoirs of the American Mathematical Society; Vol.204, N 960). - Bibliogr.: p.73-77. - ISBN 978-0-8218-4515-2; ISSN 0065-9266
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1. Introduction and statement of the problem ............ 1

1.1. Introduction ............................................... 1
1.2. Stochastic differential games and the singular
     perturbation problem ....................................... 6
1.3. The Bellman-Isaacs equations ............................... 8

Chapter 2. Abstract ergodicity, stabilization, and
           convergence ......................................... 11

2.1. Ergodicity and the effective Hamiltonian .................. 11
2.2. Stabilization and the effective terminal cost ............. 15
2.3. The general convergence result ............................ 17

Chapter 3. Uncontrolled fast variables and averaging ........... 21

3.1. Ergodicity ................................................ 22
3.2. Stabilization ............................................. 23
3.3. Uniform convergence ....................................... 24
3.4. An explicit formula for the limit control problem ......... 26

Chapter 4. Uniformly nondegenerate fast diffusion .............. 29

4.1. Ergodicity ................................................ 29
4.2. Stabilization ............................................. 31
4.3. Uniform convergence ....................................... 33

Chapter 5. Hypoelliptic diffusion of the fast variables ........ 37

5.1. Ergodicity and stabilization .............................. 38
5.2. Uniform convergence ....................................... 39

Chapter 6. Controllable fast variables ......................... 41

6.1. Bounded-time controllability and ergodicity ............... 41
6.2. Stabilization and a formula for the effective initial
     data ...................................................... 46
6.3. An explicit formula for the effective Hamiltonian and 
     the limit differential game ............................... 47
6.4. Uniform convergence ....................................... 50
6.5. The reduction order formula for the effective control
     problem ................................................... 52

Chapter 7. Nonresonant fast variables .......................... 55

7.1. Ergodicity ................................................ 55
7.2. Stabilization ............................................. 57
7.3. Uniform convergence ....................................... 60

Chapter 8. A counterexample to uniform convergence ............. 61

Chapter 9. Applications to homogenization ...................... 67

9.1. Periodic homogenization of 1st order H-J equations ........ 67
9.2. Periodic homogenization of 2nd order equations ............ 69

Bibliography ................................................... 73


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:56 2019. Размер: 6,471 bytes.
Посещение N 1703 c 04.05.2010