Monografie matematyczne. New series; 69 (Basel, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаPanchapagesan T.V. The Bartle-Dunford-Schwartz integral: integration with respect to a sigma-additive vector measure / ed. by Wojtaszczyk P. et al.; Instytut matematyczny PAN. - 2008. - Basel: Birkhäuser Verlag AG, 2008. - xv, 301 p. - (Monografie matematyczne. New series; 69). - Bibliogr.: p.287-292; Ind.: p.297-301. - ISBN 978-3-7643-8601-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix

1  Preliminaries
   1.1  Banach space-valued measures ............................ 1
   1.2  lcHs-valued measures ................................... 11

2  Basic Properties of the Bartle-Dunford-Schwartz Integral
   2.1  (KL) m-integrability ................................... 17
   2.2  (BDS) m-integrability .................................. 26

3  fig.1p-spaces, 1 ≤ p ≤ 
   3.1  The seminorms mp(•,T) on fig.1pfig.2(m), 1 ≤ p <  ........... 33
   3.2  Completeness of fig.1pfig.2(m) and fig.1pfig.3(m), 1 ≤ p < , fig.1(m) ... 42
   3.3  Characterizations of fig.1pfig.3(m), 1 ≤ p <  ................. 47
   3.4  Other convergence theorems for fig.1p(m), 1 ≤ p <  ........ 54
   3.5  Relations between the spaces fig.1p(m) ..................... 63

4  Integration With Respect to IcHs-valued Measures
   4.1  (KL) m-integrability (m lcHs-valued) ................... 65
   4.2  (BDS) m-integrability (m lcHs-valued) .................. 78
   4.3  The locally convex spaces fig.1pfig.2(m), fig.1pfig.2(σ(Ρ),m),
        fig.1pfig.3(m) and fig.1pfig.3(σ(Ρ),m), 1 ≤ p <  ...................... 85
   4.4  Completeness of fig.1pfig.2(m), fig.1pfig.3(m), fig.1pfig.2(σ(Ρ),m) and
        fig.1pfig.3(σ(Ρ),m), for suitable X ............................ 91
   4.5  Characterizations of fig.1p-spaces, convergence
        theorems and relations between fig.1p-spaces .............. 101
   4.6  Separability of fig.1p(m) and fig.1p(σ(Ρ),m), 1 ≤ p < ,
        m IcHs-valued ......................................... 109

5  Applications to Integration in Locally Compact Hausdorff
   Spaces - Part I
   5.1  Generalizations of the Vitali-Carathéodory
        Integrability Criterion Theorem ....................... 117
   5.2  The Baire version of the Dieudonné-Grothendieck
        theorem and its vector-valued generalizations ......... 121
   5.3  Weakly compact bounded Radon operators and 
        prolongable Radon operators ........................... 138

6  Applications to Integration in Locally Compact Hausdorff
   Spaces - Part II
   6.1  Generalized Lusin's Theorem and its variants .......... 153
   6.2  Lusin measurability of functions and sets ............. 159
   6.3  Theorems of integrability criteria .................... 165
   6.4  Additional convergence theorems ....................... 187
   6.5  Duals of fig.11(m) and fig.11(n) .............................. 202

7  Complements to the Thomas Theory
   7.1  Integration of complex functions with respect
        to a Radon operator ................................... 213
   7.2  Integration with respect to a weakly compact bounded
        Radon operator ........................................ 221
   7.3  Integration with respect to a prolongable Radon
        operator .............................................. 233
   7.4  Baire versions of Proposition 4.8 and Theorem 4.9
        of [T] ................................................ 241
   7.5  Weakly compact and prolongable Radon vector
        measures .............................................. 251
   7.6  Relation between fig.1p(u) and fig.1p(mu), u a weakly
        compact bounded Radon operator or a prolongable
        Radon operator ........................................ 275

Bibliography .................................................. 287

Acknowledgment ................................................ 293

List of Symbols ............................................... 295

Index ......................................................... 297


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:56 2019. Размер: 9,085 bytes.
Посещение N 1798 c 20.04.2010