Preface ........................................................ ix
1 Introduction ................................................. 1
Part I ......................................................... 13
2 Formation of carbon allotropes .............................. 15
2.1 Diamond ................................................ 18
2.2 Graphite ............................................... 19
2.3 Fullerenes ............................................. 22
2.4 Carbon nanotubes and nanohorns ......................... 23
3 Nanoscale numerical simulation techniques ................... 43
3.1 Essential concepts from classical statistical
mechanics .............................................. 44
3.2 Key concepts underlying the classical molecular
dynamics (MD) simulation method ........................ 61
3.3 Key concepts underlying the classical Monte Carlo (MC)
simulation method ...................................... 71
3.4 Ab initio molecular dynamics simulation methods ........ 80
4 Interatomic potentials and force-fields in
the computational physics of carbon nanotubes ............... 91
4.1 Interatomic potential energy function (PEF) ............ 91
4.2 Force-field (molecular mechanics) method ............... 94
4.3 Energetics of carbon nanotubes ......................... 95
4.4 Energetics of SWCNT-C60 and C60-C60 interactions ....... 106
4.5 Energetics of fluid flow through carbon nanotubes ..... 109
4.6 Energetics of gas adsorption inside carbon nanotubes
and nanohorns ......................................... 119
5 Continuum elasticity theories for modelling
the mechanical properties of nanotubes ..................... 135
5.1 Basic concepts from continuum elasticity theory ....... 135
5.2 Nonlinear thin-shell theories ......................... 152
5.3 Theories of curved plates ............................. 159
5.4 Theories of vibration, bending and buckling of
beams ................................................. 166
6 Atomistic theories of mechanical properties ................ 186
6.1 Atomic-level stress tensor ............................ 186
6.2 Elastic constants from atomistic dynamics ............. 190
6.3 Bulk and Young's moduli ............................... 192
7 Theories for modelling thermal transport in nanotubes ...... 195
7.1 Thermal conductivity .................................. 195
7.2 Specific heat ......................................... 202
Part II ....................................................... 209
8 Modelling fluid flow in nanotubes .......................... 211
8.1 Modelling the influence of a nanotube's dynamics and
length on the fluid flow .............................. 212
8.2 Modelling the flow of CH4 through SWCNTs .............. 215
8.3 Modelling self- and collective diffusivities of
fluids in SWCNTs ...................................... 217
8.4 Modelling the capillary flow in an SWCNT .............. 219
8.5 Modelling the confinement and flow of liquid water
inside SWCNTs ......................................... 221
8.6 Modelling the dynamics of C60@nanotubes ............... 223
9 Modelling gas adsorption in carbon nanotubes ............... 225
9.1 Atomic and molecular hydrogen in nanotubes ............ 225
9.2 Adsorption of rare gases in SWCNTs .................... 251
9.3 Adsorption of gases in the assemblies of SWCNHs ....... 264
10 Modelling the mechanical properties of carbon nanotubes .... 277
10.1 Modelling compression, bending, buckling, vibration,
torsion and fracture of nanotubes ..................... 279
10.2 Modelling the elastic properties of SWCNTs and
MWCNTs ................................................ 383
10.3 Stress-strain properties of nanotubes ................. 416
10.4 Validity of application of continuum-based theories
to model the mechanical properties of nanotubes ....... 439
11 Modelling the thermal properties of carbon nanotubes ....... 450
11.1 Computation of thermal conductivity ................... 451
11.2 Specific heat of nanotubes ............................ 468
References .................................................... 477
Index ......................................................... 487
|