Princeton mathematical series; 48 (Princeton; Oxford, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAstala K. Elliptic partial differential equations and quasiconformal mappings in the plane / Astala K., Iwaniec T., Martin G. - Princeton; Oxford: Princeton University Press, 2009. - xvi, 677 p.: ill. - (Princeton mathematical series; 48). - Bibliogr.: p.647-670. - Ind.: p.671-677. - ISBN 978-0-691-13777-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ xv

1. Introduction ................................................. 1
   1.1. Calculus of Variations, PDEs and Quasiconformal
        Mappings ................................................ 2
   1.2. Degeneracy .............................................. 6
   1.3. Holomorphic Dynamical Systems ........................... 8
   1.4. Elliptic Operators and the Beurling Transform ........... 9
2. A Background in Conformal Geometry .......................... 12
   2.1. Matrix Fields and Conformal Structures ................. 12
   2.2. The Hyperbolic Metric .................................. 15
   2.3. The Space S(2) ......................................... 17
   2.4. The Linear Distortion .................................. 21
   2.5. Quasiconformal Mappings ................................ 22
   2.6. Radial Stretchings ..................................... 28
   2.7. Hausdorff Dimension .................................... 30
   2.8. Degree and Jacobian .................................... 32
   2.9. A Background in Complex Analysis ....................... 34
        2.9.1. Analysis with Complex Notation .................. 34
        2.9.2. Riemann Mapping Theorem and Uniformization ...... 36
        2.9.3. Schwarz-Pick Lemma of Ahlfors ................... 37
        2.9.4. Normal Families and Montel's Theorem ............ 39
        2.9.5. Hurwitz's Theorem ............................... 40
        2.9.6. Bloch's Theorem ................................. 40
        2.9.7. The Argument Principle .......................... 41
2.10.Distortion by Conformal Mapping ........................... 41
        2.10.1.The Area Formula ................................ 41
        2.10.2.Koebe 1-Theorem and Distortion Theorem .......... 44
                     4
3. The Foundations of Quasiconformal Mappings .................. 48
   3.1. Basic Properties ....................................... 48
   3.2. Quasisymmetry .......................................... 49
   3.3. The Gehring-Lehto Theorem .............................. 51
        3.3.1. The Differentiability of Open Mappings .......... 52
   3.4. Quasisymmetric Maps Are Quasiconformal ................. 58
   3.5. Global Quasiconformal Maps Are Quasisymmetric .......... 64
   3.6. Quasiconformality and Quasisymmetry: Local
        Equivalence ............................................ 70
   3.7. Lusin's Condition fig.8 and Positivity of the Jacobian .... 72
   3.8. Change of Variables .................................... 76
   3.9. Quasisymmetry and Equicontinuity ....................... 78
   3.10.Holder Regularity ...................................... 80
   3.11.Quasisymmetry and δ-Monotone Mappings .................. 83
4. Complex Potentials .......................................... 92
   4.1. The Fourier Transform .................................. 98
        4.1.1. The Fourier Transform in L1 and L2 .............. 99
        4.1.2. Fourier Transform on Measures .................. 100
        4.1.3. Multipliers .................................... 100
        4.1.4. The Hecke Identities ........................... 101
   4.2. The Complex Riesz Transforms Rk ....................... 102
        4.2.1. Potentials Associated with Rk .................. 103
   4.3. Quantitative Analysis of Complex Potentials ........... 104
        4.3.1. The Logarithmic Potential ...................... 105
        4.3.2. The Cauchy Transform ........................... 109
   4.4. Maximal Functions and Interpolation ................... 117
        4.4.1. Interpolation .................................. 117
        4.4.2. Maximal Functions .............................. 120
   4.5. Weak-Type Estimates and LP-Bounds ..................... 124
        4.5.1. Weak-Type Estimates for Complex Riesz
               Transforms ..................................... 124
        4.5.2. Estimates for the Beurling Transform S ......... 128
        4.5.3. Weighted LP-Theory for S ...................... 130
   4.6. BMO and the Beurling Transform ........................ 131
        4.6.1. Global John-Nirenberg Inequalities ............. 132
        4.6.2. Norm Bounds in BMO ............................. 134
        4.6.3. Orthogonality Properties of S .................. 135
        4.6.4. Proof of the Pointwise Estimates ............... 137
        4.6.5. Commutators .................................... 143
        4.6.6. The Beurling Transform of Characteristic
               Functions ...................................... 146
   4.7. Holder Estimates ...................................... 147
        4.7.1. Holder Bounds for the Beurling Transform ....... 147
        4.7.2. The Inhomogeneous Cauchy-Riemann Equation ...... 149
   4.8. Beurling Transforms for Boundary Value Problems ....... 150
        4.8.1. The Beurling Transform on Domains .............. 151
        4.8.2. LP-Theory ...................................... 153
        4.8.3. Complex Potentials for the Dirichlet Problem ... 155
   4.9. Complex Potentials in Multiply Connected Domains ...... 158
5. The Measurable Riemann Mapping Theorem: The Existence
   Theory of Quasiconformal Mappings .......................... 161
   5.1. The Basic Beltrami Equation ........................... 163
   5.2. Quasiconformal Mappings with Smooth Beltrami
        Coefficient ........................................... 165
   5.3. The Measurable Riemann Mapping Theorem ................ 168
   5.4. LP-Estimates and the Critical Interval ................ 172
        5.4.1. The Caccioppoli Inequalities ................... 174
        5.4.2. Weakly Quasiregular Mappings ................... 178
   5.5. Stoilow Factorization ................................. 178
   5.6. Factoring with Small Distortion ....................... 184
   5.7. Analytic Dependence on Parameters ..................... 185
   5.8. Extension of Quasisymmetric Mappings of the Real
        Line .................................................. 189
        5.8.1. The Douady-Earle Extension ..................... 191
        5.8.2. The Beurling-Ahlfors Extension ................. 192
   5.9. Reflection ............................................ 192
   5.10.Conformed Welding ..................................... 193
6. Parameterizing General Linear Elliptic Systems ............. 195
   6.1. Stoilow Factorization for General Elliptic Systems .... 196
   6.2. Linear Families of Quasiconformal Mappings ............ 198
   6.3. The Reduced Beltrami Equation ......................... 202
   6.4. Homeomorphic Solutions to Reduced Equations ........... 204
        6.4.1. Fabes-Stroock Theorem .......................... 206
7. The Concept of Ellipticity ................................. 210
   7.1. The Algebraic Concept of Ellipticity .................. 211
   7.2. Some Examples of First-Order Equations ................ 213
   7.3. General Elliptic First-Order Operators in Two
        Variables ............................................. 214
        7.3.1. Complexification ............................... 215
        7.3.2. Homotopy Classification ........................ 217
        7.3.3. Classification; n = 1 .......................... 217

   7.4. Partial Differential Operators with Measurable
        Coefficients .......................................... 221
   7.5. Quasilinear Operators ................................. 222
   7.6. Lusin Measurability ................................... 223
   7.7. Fully Nonlinear Equations ............................. 226
   7.8. Second-Order Elliptic Systems ......................... 231
        7.8.1. Measurable Coefficients ........................ 233
8.Solving General Nonlinear First-Order Elliptic Systems ...... 235
   8.1. Equations Without Principal Solutions ................. 236
   8.2. Existence of Solutions ................................ 237
   8.3. Proof of Theorem 8.2.1 ................................ 239
        8.3.1. Step 1: H Continuous, Supported on an
               Annulus ........................................ 239
        8.3.2. Step 2: Good Smoothing of Н .................... 242
        8.3.3. Step 3: Lusin-Egoroff Convergence .............. 244
        8.3.4. Step 4: Passing to the Limit ................... 246
   8.4. Equations with Infinitely Many Principal Solutions .... 248
   8.5. Liouville Theorems .................................... 249
   8.6. Uniqueness ............................................ 253
        8.6.1. Uniqueness for Normalized Solutions ............ 255
   8.7. Lipschitz H(z,ω,ζ) .................................... 256
9.Nonlinear Riemann Mapping Theorems .......................... 259
   9.1. Ellipticity and Change of Variables ................... 261
   9.2. The Nonlinear Mapping Theorem: Simply Connected
        Domains ............................................... 263
        9.2.1.Existence ....................................... 264
        9.2.2.Uniqueness ...................................... 267
   9.3. Mappings onto Multiply Connected Schottky Domains ..... 269
        9.3.1. Some Preliminaries ............................. 271
        9.3.2. Proof of the Mapping Theorem 9.3.4 ............. 273
10.Conformal Deformations and Beltrami Systems ................ 275
   10.1.Quasilinearity of the Beltrami System ................. 275
        10.1.1.The Complex Equation ........................... 276
   10.2.Conformal Equivalence of Riemannian Structures ........ 279
   10.3.Group Properties of Solutions ......................... 280
        10.3.1.Semigroups ..................................... 283
        10.3.2.Sullivan-Tukia Theorem ......................... 285
        10.3.3.Ellipticity Constants .......................... 287
11.A Quasilinear Cauchy Problem ............................... 289
   11.1.The Nonlinear fig.1-Equation .............................. 289
   11.2.A Fixed-Point Theorem ................................. 290
   11.3.Existence and Uniqueness .............................. 291
12.Holomorphic Motions ........................................ 293
   12.1.The λ-Lemma ........................................... 294
   12.2.Two Compelling Examples ............................... 296
        12.2.1.Limit Sets of Kleinian Groups .................. 296
        12.2.2.Julia Sets of Rational Maps .................... 297
   12.3.The Extended λ-Lemma .................................. 298
        12.3.1.Holomorphic Motions and the Cauchy Problem ..... 299
        12.3.2.Holomorphic Axiom of Choice .................... 300
   12.4.Distortion of Dimension in Holomorphic Motions ........ 306
   12.5.Embedding Quasiconformal Mappings in Holomorphic
        Flows ................................................. 309
   12.6.Distortion Theorems ................................... 310
   12.7.Deformations of Quasiconformal Mappings ............... 313
13.Higher Integrability ....................................... 316
   13.1.Distortion of Area .................................... 317
        13.1.1.Initial Bounds for Distortion of Area .......... 318
        13.1.2.Weighted Area Distortion ....................... 319
        13.1.3.An Example ..................................... 323
        13.1.4.General Area Estimates ......................... 324
   13.2.Higher Integrability .................................. 327
        13.2.1.Integrability at the Borderline ................ 330
        13.2.2.Distortion of Hausdorff Dimension .............. 332
   13.3.The Dimension of Quasicircles ......................... 333
        13.3.1.Symmetrization of Beltrami Coefficients ........ 336
        13.3.2.Distortion of Dimension ........................ 338
   13.4.Quasiconformal Mappings and BMO ....................... 343
        13.4.1.Quasiconformal Jacobians and Ар-Weights ........ 345
   13.5.Painleve's Theorem: Removable Singularities ........... 347
        13.5.1.Distortion of Hausdorff Measure ................ 351
   13.6.Examples of Nonremovable Sets ......................... 357
14.LP-Theory of Beltrami Operators ............................ 362
   14.1.Spectral Bounds and Linear Beltrami Operators ......... 365
   14.2.Invertibility of the Beltrami Operators ............... 366
        14.2.1.Proof of Invertibility; Theorem 14.0.4 ......... 368
   14.3.Determining the Critical Interval ..................... 369
   14.4.Injectivity in the Borderline Cases ................... 373
        14.4.1.Failure of Factorization in W1,q ................ 376
        14.4.2.Injectivity and Liouville-Type Theorems ........ 378
   14.5.Beltrami Operators; Coefficients in VMO ............... 382
   14.6.Bounds for the Beurling Transform ..................... 385
15.Schauder Estimates for Beltrami Operators .................. 389
   15.1.Examples .............................................. 390
   15.2.The Beltrami Equation with Constant Coefficients ...... 391
   15.3.A Partition of Unity .................................. 392
   15.4.An Interpolation ...................................... 394
   15.5.Hölder Regularity for Variable Coefficients ........... 395
   15.6.Hölder-Caccioppoli Estimates .......................... 398
   15.7.Quasilinear Equations ................................. 400
16.Applications to Partial Differential Equations ............. 403
   16.1.The Hodge * Method .................................... 404
        16.1.1.Equations of Divergence Type: The A-Harmonic
               Operator ....................................... 405
        16.1.2.The Natural Domain of Definition ............... 406
        16.1.3.The Л-Harmonic Conjugate Function .............. 408
        16.1.4.Regularity of Solutions ........................ 409
        16.1.5.General Linear Divergence Equations ............ 411
        16.1.6.А-Harmonic Fields .............................. 414
   16.2.Topological Properties of Solutions ................... 418
   16.3.The Hodographic Method ................................ 420
        16.3.1.The Continuity Equation ........................ 420
        16.3.2.The p-Harmonic Operator div|fig.2|Р-2fig.2 ............. 423
        16.3.3.Second-Order Derivatives ....................... 424
        16.3.4.The Complex Gradient ........................... 427
        16.3.5.Hodograph Transform for the p-Laplacian ........ 430
        16.3.6.Sharp Holder Regularity for p-Harmonic
               Functions ...................................... 431
        16.3.7.Removing the Rough Regularity in the
               Gradient ....................................... 432
   16.4.The Nonlinear fig.6-Harmonic Equation .................... 433
        16.4.1.δ-Monotonicity of the Structural Field ......... 435
        16.4.2.The Dirichlet Problem .......................... 441
        16.4.3.Quasiregular Gradient Fields and
               С1,α-Regularity ................................ 445
   16.5.Boundary Value Problems ............................... 449
        16.5.1.A Nonlinear Riemann-Hilbert Problem ............ 452
   16.6.G-Compactness of Beltrami Differential Operators ...... 456
        16.6.1.G-Convergence of the Operators fig.3fig.5 - μjfig.3z ........ 457
        16.6.2.G-Limits and the Weak*-Topology ................ 459
        16.6.3.The Jump from fig.3fig.5 — υfig.1z to fig.3fig.5 - μfig.3z ............. 461
        16.6.4.The Adjacent Operator's Two Primary
               Solutions ...................................... 462
        16.6.5.The Independence of Фz(z) and ψz{z) ............. 463
        16.6.6.Linear Families of Quasiregular Mappings ....... 464
        16.6.7.G-Compactness for Beltrami Operators ........... 467
17.PDEs Not of Divergence Type: Pucci's Conjecture ............ 472
   17.1.Reduction to a First-Order System ..................... 475
   17.2.Second-Order Caccioppoli Estimates .................... 476
   17.3.The Maximum Principle and Pucci's Conjecture .......... 478
   17.4.Interior Regularity ................................... 481
   17.5.Equations with Lower-Order Terms ...................... 483
        17.5.1.The Dirichlet Problem .......................... 486
   17.6.Pucci's Example ....................................... 488
18.Quasiconformal Methods in Impedance Tomography:
   Calderon's Problem ......................................... 490
   18.1.Complex Geometric Optics Solutions .................... 493
   18.2.The Hilbert Transform fig.7σ .............................. 495
   18.3.Dependence on Parameters .............................. 497
   18.4.Nonlinear Fourier Transform ........................... 499
   18.5.Argument Principle .................................... 502
   18.6.Subexponential Growth ................................. 504
   18.7.The Solution to Calderon's Problem .................... 510
19.Integral Estimates for the Jacobian ........................ 514
   19.1.The Fundamental Inequality for the Jacobian ........... 514
   19.2.Rank-One Convexity and Quasiconvexity ................. 518
        19.2.1.Burkholder's Theorem ........................... 521
   19.3.L^Integrability of the Jacobian ....................... 523
20.Solving the Beltrami Equation: Degenerate Elliptic Case .... 527
   20.1.Mappings of Finite Distortion; Continuity ............. 529
        20.1.1.Topological Monotonicity ....................... 530
        20.1.2.Proof of Continuity in W1,2 .................... 534
   20.2.Integrable Distortion; W1,2-Solutions and Their
        Properties ............................................ 534
   20.3.A Critical Example .................................... 540
   20.4.Distortion in the Exponential Class ................... 543
        20.4.1.Example: Regularity in Exponential
               Distortion ..................................... 543
        20.4.2.Beltrami Operators for Degenerate Equations .... 545
        20.4.3.Decay of the Neumann Series .................... 549
        20.4.4.Existence Above the Critical Exponent .......... 554
        20.4.5.Exponential Distortion: Existence of
               Solutions ...................................... 557
        20.4.6.Optimal Regularity ............................. 560
        20.4.7.Uniqueness of Principal Solutions .............. 563
        20.4.8.Stoilow Factorization .......................... 564
        20.4.9.Failure of Factorization in W1,q When q < 2 ..... 567
   20.5.Optimal Orlicz Conditions for the Distortion
        Function .............................................. 570
   20.6.Global Solutions ...................................... 576
        20.6.1.Solutions on fig.4 ................................. 576
        20.6.2.Solutions on fig.4 ................................. 578
   20.7.A Liouville Theorem ................................... 579
   20.8.Applications to Degenerate PDEs ....................... 580
   20.9.Lehto's Condition ..................................... 581
21.Aspects of the Calculus of Variations ...................... 586
   21.1.Minimizing Mean Distortion ............................ 586
        21.1.1.Formulation of the General Problem ............. 588
        21.1.2.The L1-Grötzsch Problem ........................ 588
        21.1.3.Sublinear Growth: Failure of Minimization ...... 591
        21.1.4.Inverses of Homeomorphisms of Integrable
               Distortion ..................................... 592
        21.1.5.The Traces of Mappings with Integrable
               Distortion ..................................... 595
   21.2.Variational Equations ................................. 599
        21.2.1.The Lagrange-Euler Equations ................... 601
        21.2.2.Equations for the Inverse Map .................. 604
   21.3.Mean Distortion, Annuli and the Nitsche Conjecture .... 606
        21.3.1.Polar Coordinates .............................. 611
        21.3.2.Free Lagrangiaus ............................... 612
        21.3.3.Lower Bounds by Free Lagrangians ............... 613
        21.3.4.Weighted Mean Distortion ....................... 615
        21.3.5.Minimizers within the Nitsche Range ............ 616
        21.3.6.Beyond the Nitsche Bound ....................... 618
        21.3.7.The Minimizing Sequence and Its BV-limit ....... 619
        21.3.8.Correction Lemma ............................... 622
Appendix: Elements of Sobolev Theory and Function Spaces ...... 624
        A.l. Schwartz Distributions ........................... 624
        A.2. Definitions of Sobolev Spaces .................... 627
        A.3. Mollification .................................... 628
        A.4. Pointwise Coincidence of Sobolev Functions ....... 630
        A.5. Alternate Characterizations ...................... 630
        A.6. Embedding Theorems ............................... 633
        A.7. Duals and Compact Embeddings ..................... 636
        A.8. Hardy Spaces and BMO ............................. 637
        A.9. Reverse Hölder Inequalities ...................... 640
        A.10.Variations of Sobolev Mappings ................... 640

Basic Notation ................................................ 643
Bibliography .................................................. 647
Index ......................................................... 671


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:22 2019. Размер: 26,464 bytes.
Посещение N 2352 c 06.10.2009