The Econometrics of panel data (Berlin; Heidelberg, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаThe Econometrics of panel data: fundamentals and recent developments in theory and practice / ed. by Ma'tya's L., Sevestre P. - Berlin; Heidelberg: Springer-Verlag, 2008. - xxvi, 950 p. - (Advanced studies in theoretical and applied econometrics; 46.). - ISBN 978-3-540-75889-1; ISSN 1570-5811
 

Оглавление / Contents
 
Part 1 Fundamentals

1. Introduction ................................................. 3
      Marc Nerlove, Patrick Sevestre and Pietro Balestra

   1.1. Introduction ............................................ 3
   1.2. Data, Data-Generating Processes (DGP), and Inference .... 4
   1.3. History and Dynamics .................................... 8
   1.4. A Brief Review of Other Methodological Developments .... 13
   1.5. Conclusion ............................................. 21
   References .................................................. 21

2. Fixed Effects Models and Fixed Coefficients Models .......... 23
      Pietro Balestra and Jayalakshmi Krishnakumar

   2.1. The Covariance Model: Individual Effects Only .......... 24
        2.1.1. Specification ................................... 24
        2.1.2. Estimation ...................................... 25
        2.1.3. Inference ....................................... 28
   2.2. The Covariance Model: Individual and Time Effects ...... 29
        2.2.1. Time Effects Only ............................... 29
        2.2.2. Time and Individual Effects ..................... 30
        2.2.3. Inference ....................................... 32
   2.3. Non-spherical Disturbances ............................. 33
        2.3.1. What Variance-Covariance Stucture? .............. 33
        2.3.2. Two General Propositions for Fixed Effects
               Models .......................................... 34
        2.3.3. Individual Fixed Effects and Serial
               Correlation ..................................... 36
        2.3.4. Heteroscedasticity in Fixed Effects Models ...... 38
   2.4. Extensions ............................................. 40
        2.4.1. Constant Variables in One Dimension ............. 40
        2.4.2. Variable Slope Coefficients ..................... 41
        2.4.3. Unbalanced Panels ............................... 44
   References .................................................. 48

3. Error Components Models ..................................... 49
      Badi H. Baltagi, Laszlo Matyas and Patrick Sevestre

   3.1. Introduction ........................................... 49
   3.2. The One-Way Error Components Model ..................... 50
        3.2.1. Definition/Assumptions of the Model ............. 50
        3.2.2. The GLS Estimator ............................... 52
        3.2.3. The Feasible GLS Estimator ...................... 55
        3.2.4. Some Other Estimators ........................... 58
        3.2.5. Prediction ...................................... 63
   3.3. More General Structures of the Disturbances ............ 64
        3.3.1. The Two-Way Error Components Model .............. 64
        3.3.2. Serial Correlation in the Disturbances .......... 70
        3.3.3. Two-Way Error Components vs Kmenta's
               Approach ........................................ 73
        3.3.4. Heteroskedasticity in the Disturbances .......... 74
   3.4. Testing ................................................ 78
        3.4.1. Testing for the Absence of Individual Effects ... 79
        3.4.2. Testing for Uncorrected Effects: Hausman's
               Test ............................................ 80
        3.4.3. Testing for Serial Correlation .................. 81
        3.4.4. Testing for Heteroskedasticity .................. 82
   3.5. Estimation Using Unbalanced Panels ..................... 84
   References .................................................. 85

4. Endogenous Regressors and Correlated Effects ................ 89
      Rachid Boumahdi and Alban Thomas

   4.1. Introduction ........................................... 89
   4.2. Estimation of Transformed Linear Panel Data Models ..... 90
        4.2.1. Error Structures and Filtering Procedures ....... 91
        4.2.2. An IV Representation of the Transformed
               Linear Model .................................... 93
   4.3. Estimation with Time-Invariant Regressors .............. 95
        4.3.1. Introduction .................................... 95
        4.3.2. Instrumental Variable Estimation ................ 96
        4.3.3. More Efficient IV Procedures .................... 98
   4.4. A Measure of Instrument Relevance ...................... 99
   4.5. Incorporating Time-Varying Regressors ................. 101
        4.5.1. Instrumental Variables Estimation .............. 102
   4.6. GMM Estimation of Static Panel Data Models ............ 104
        4.6.1. Static Model Estimation ........................ 105
        4.6.2. GMM Estimation with HT, AM and BMS
               Instruments .................................... 107
   4.7. Unbalanced Panels ..................................... 108
   References ................................................. 110

5. The Chamberlain Approach to Panel Data: An Overview
   and Some Simulations ....................................... 113
      Bruno Crepon and Jacques Mairesse

   5.1. Introduction .......................................... 113
   5.2. The Chamberlain П Matrix Framework .................... 115
        5.2.1. The П Matrix ................................... 115
        5.2.2. Relations Between П and the Parameters of
               Interest ....................................... 118
        5.2.3. Four Important Cases ........................... 120
        5.2.4. Restrictions on the Covariance Matrix of
               the Disturbances ............................... 124
        5.2.5. A Generalization of the Chamberlain Method ..... 125
        5.2.6. The Vector Representation of the Chamberlain
               Estimating Equations ........................... 126
        5.2.7. The Estimation of Matrix П ..................... 127
   5.3. Asymptotic Least Squares .............................. 130
        5.3.1. ALS Estimation ................................. 130
        5.3.2. The Optimal ALS Estimator ...................... 132
        5.3.3. Specification Testing in the ALS Framework ..... 135
   5.4. The Equivalence of the GMM and the Chamberlain
        Methods ............................................... 137
        5.4.1. A Reminder on the GMM .......................... 137
        5.4.2. Equivalence of the GMM and the Chamberlain
               Methods ........................................ 139
        5.4.3. Equivalence in Specific Cases .................. 140
   5.5. Monte Carlo Simulations ............................... 144
        5.5.1. Design of the Simulation Experiments ........... 144
        5.5.2. Consistency and Bias ........................... 147
        5.5.3. Efficiency and Robustness ...................... 152
        5.5.4. Standard Errors ................................ 155
        5.5.5. Specification Tests ............................ 158
   5.6. Appendix A: An Extended View of the Chamberlain
        Method ................................................ 160
        5.6.1. Simultaneous Equations Models .................. 160
        5.6.2. VAR Models ..................................... 160
        5.6.3. Endogenous Attrition ........................... 162
   5.7. Appendix B: Vector Representation of the Chamberlain
        Estimating Equations .................................. 163
        5.7.1. The Vec Operator ............................... 163
        5.7.2. Correlated Effects ............................. 164
        5.7.3. Errors in Variables ............................ 164
        5.7.4. Weak Simultaneity .............................. 166
        5.7.5. Combination of the Different Cases ............. 166
        5.7.6. Lagged Dependent Variable ...................... 167
        5.7.7. Restrictions on the Covariance Matrix of
               the Disturbances ............................... 167
   5.8. Appendix C: Manipulation of Equations and
        Parameters in the ALS Framework ....................... 168
        5.8.1. Transformation of the Estimating Equations ..... 168
        5.8.2. Eliminating Parameters of Secondary Interest ... 169
        5.8.3. Recovering Parameters of Secondary Interest
               Once Eliminated ................................ 170
        5.8.4. Elimination of Auxiliary Parameters ............ 173
   5.9. Appendix D: Equivalence Between Chamberlain's, GMM
        and Usual Panel Data Estimators ....................... 174
   5.10.Appendix E: Design of Simulation Experiments .......... 177
        5.10.1.Generating Process of the Variable x ........... 177
        5.10.2.Regression Model ............................... 178
        5.10.3.Calibration of Simulations ..................... 179
        5.10.4.Three Scenarios ................................ 180
        5.10.5.The Chamberlain and GMM Estimators ............. 180
        5.10.6.Standard Errors and Specification Tests ........ 181
   References ................................................. 181

6. Random Coefficient Models .................................. 185
      Cheng Hsiao and M. Hashem Pesaran

   6.1. Introduction .......................................... 185
   6.2. The Models ............................................ 186
   6.3. Sampling Approach ..................................... 189
   6.4. Mean Group Estimation ................................. 192
   6.5. Bayesian Approach ..................................... 193
   6.6. Dynamic Random Coefficients Models .................... 197
   6.7. Testing for Heterogeneity Under Weak Exogeneity ....... 199
   6.8. A Random Coefficient Simultaneous Equation System ..... 203
   6.9. Random Coefficient Models with Cross-Section
        Dependence ............................................ 206
   6.10.Concluding Remarks .................................... 208
   References ................................................. 211

7. Parametric Binary Choice Models ............................ 215
      Michael Lechner, Stefan Lollivier and Thierry Magnac

   7.1. Introduction .......................................... 215
   7.2. Random Effects Models Under Strict Exogeneity ......... 217
        7.2.1. Errors are Independent Over Time ............... 218
        7.2.2. One Factor Error Terms ......................... 219
        7.2.3. General Error Structures ....................... 221
        7.2.4. Simulation Methods ............................. 223
        7.2.5. How to Choose a Random Effects Estimator
               for an Application ............................. 228
        7.2.6. Correlated Effects ............................. 229
   7.3. Fixed Effects Models Under Strict Exogeneity .......... 230
        7.3.1. The Model ...................................... 231
        7.3.2. The Method of Conditional Likelihood ........... 232
        7.3.3. Fixed Effects Maximum Score .................... 235
        7.3.4. GMM Estimation ................................. 236
        7.3.5. Large-T Approximations ......................... 237
   7.4. Dynamic Models ........................................ 238
        7.4.1. Dynamic Random Effects Models .................. 238
        7.4.2. Dynamic Fixed Effects Models ................... 241
   References ................................................. 242

Part II Advanced Topics

8. Dynamic Models for Short Panels ............................ 249
      Mark N. Harris, Laszlo Matyas and Patrick Sevestre

   8.1. Introduction .......................................... 249
   8.2. The Model ............................................. 250
   8.3. The Inconsistency of Traditional Estimators ........... 252
   8.4. IV and GMM Estimators ................................. 255
        8.4.1. Uncorrected Individual Effects: The Original
               Balestra-Nerlove Estimator and its
               Extensions ..................................... 256
        8.4.2. Correlated Individual Effects .................. 257
        8.4.3. Some Monte Carlo Evidence ...................... 269
   8.5. The Maximum Likelihood Estimator ...................... 270
   8.6. Testing in Dynamic Models ............................. 272
        8.6.1. Testing the Validity of Instruments ............ 272
        8.6.2. Testing for Unobserved Effects ................. 273
        8.6.3. Testing for the Absence of Serial
               Correlation in ε ............................... 274
        8.6.4. Significance Testing in Two-Step Variants ...... 275
   References ................................................. 276

9. Unit Roots and Cointegration in Panels ..................... 279
      Jorg Breitung and M. Hashem Pesaran

   9.1. Introduction .......................................... 279
   9.2. First Generation Panel Unit Root Tests ................ 281
        9.2.1. The Basic Model ................................ 281
        9.2.2. Derivation of the Tests ........................ 282
        9.2.3. Null Distribution of the Tests ................. 284
        9.2.4. Asymptotic Power of the Tests .................. 287
        9.2.5. Heterogeneous Trends ........................... 288
        9.2.6. Short-Run Dynamics ............................. 291
        9.2.7. Other Approaches to Panel Unit Root Testing .... 293
   9.3. Second Generation Panel Unit Root Tests ............... 295
        9.3.1. Cross-Section Dependence ....................... 295
        9.3.2. Tests Based on GLS Regressions ................. 296
        9.3.3. Test Statistics Based on OLS Regressions ....... 297
        9.3.4. Other Approaches ............................... 298
   9.4. Cross-Unit Cointegration .............................. 299
   9.5. Finite Sample Properties of Panel Unit Root Tests ..... 301
   9.6. Panel Cointegration: General Considerations ........... 302
   9.7. Residual-Based Approaches to Panel Cointegration ...... 306
        9.7.1. Spurious Regression ............................ 306
        9.7.2. Tests of Panel Cointegration ................... 307
   9.8. Tests for Multiple Cointegration ...................... 308
   9.9. Estimation of Cointegrating Relations in Panels ....... 309
        9.9.1. Single Equation Estimators ..................... 309
        9.9.2. System Estimators .............................. 312
   9.10.Cross-Section Dependence and the Global VAR ........... 313
   9.11.Concluding Remarks .................................... 316
   References ................................................. 316

10.Measurement Errors and Simultaneity ........................ 323
      Erik Biorn and Jayalakshmi Krishnakumar

   10.1.Introduction .......................................... 323
   10.2.Measurement Errors and Panel Data ..................... 323
        10.2.1.Model and Orthogonality Conditions ............. 325
        10.2.2.Identification and the Structure of the
               Second Order Moments ........................... 327
        10.2.3.Moment Conditions .............................. 328
        10.2.4.Estimators Constructed from Period Means ....... 331
        10.2.5.GMM Estimation and Testing in the General
               Case ........................................... 332
        10.2.6.Estimation by GMM, Combining Differences
               and Levels ..................................... 335
        10.2.7.Extensions: Modifications ...................... 343
        10.2.8.Concluding Remarks ............................. 343
   10.3.Simultaneity and Panel Data ........................... 344
        10.3.1.SEM with EC .................................... 345
        10.3.2.Extensions ..................................... 361
   10.4.Conclusion ............................................ 364
   References ................................................. 365

11.Pseudo-Panels and Repeated Cross-Sections .................. 369
      Marno Verbeek

   11.1.Introduction .......................................... 369
   11.2.Estimation of a Linear Fixed Effects Model ............ 370
   11.3.Estimation of a Linear Dynamic Model .................. 376
   11.4.Estimation of a Binary Choice Model ................... 380
   11.5.Concluding Remarks .................................... 381
   References ................................................. 382

12.Attrition, Selection Bias and Censored Regressions ......... 385
      Bo Honore, Francis Vella and Marno Verbeek

   12.1.Introduction .......................................... 385
   12.2.Censoring, Sample Selection and Attrition ............. 386
   12.3.Sample Selection and Attrition ........................ 389
   12.4.Sample Selection Bias and Robustness of Standard
        Estimators ............................................ 391
   12.5.Tobit and Censored Regression Models .................. 393
        12.5.1.Random Effects Tobit ........................... 394
        12.5.2.Random Effects Tobit with Endogenous
               Explanatory Variables .......................... 396
        12.5.3.Dynamic Random Effects Tobit ................... 398
        12.5.4.Fixed Effects Tobit Estimation ................. 399
        12.5.5.Semi-parametric Estimation ..................... 401
        12.5.6.Semi-parametric Estimation in the Presence
               of Lagged Dependent Variables .................. 402
   12.6.Models of Sample Selection and Attrition .............. 402
        12.6.1.Maximum Likelihood Estimators .................. 403
        12.6.2.Two-Step Estimators ............................ 404
        12.6.3.Alternative Selection Rules .................... 407
        12.6.4.Two-Step Estimators with Fixed Effects ......... 408
        12.6.5.Semi-parametric Sample Selection Models ........ 409
        12.6.6.Semi-parametric Estimation of a Type-3 Tobit
               Model .......................................... 410
   12.7.Some Empirical Applications ........................... 412
        12.7.1.Attrition in Experimental Data ................. 412
        12.7.2.Real Wages Over the Business Cycle ............. 413
        12.7.3.Unions and Wages ............................... 415
   References ................................................. 416

13.Simulation Techniques for Panels: Efficient Importance
   Sampling ................................................... 419
      Roman Liesenfeld and Jean-Francois Richard

   13.1.Introduction .......................................... 419
   13.2.Pseudorandom Number Generation ........................ 420
        13.2.1.Univariate Distributions ....................... 421
        13.2.2.Multivariate Distributions ..................... 424
   13.3.Importance Sampling ................................... 426
        13.3.1.General Principle .............................. 426
        13.3.2.Efficient Importance Sampling .................. 428
        13.3.3.MC Sampling Variance of (E)IS Estimates ........ 431
        13.3.4.GHK Simulator .................................. 432
        13.3.5.Common Random Numbers .......................... 432
        13.4.Simulation-Based Inference Procedures ............ 434
        13.4.1.Integration in Panel Data Models ............... 434
        13.4.2.Simulated Likelihood ........................... 435
        13.4.3.Simulated Method of Moments .................... 435
        13.4.4.Bayesian Posterior Moments ..................... 437
   13.5.Numerical Properties of Simulated Estimators .......... 437
   13.6.EIS Application: Logit Panel with Unobserved
        Heterogeneity ......................................... 439
        13.6.1.The Model ...................................... 439
        13.6.2.EIS Evaluation of the Likelihood ............... 440
        13.6.3.Empirical Application .......................... 443
   13.7.Conclusion ............................................ 445
   13.8.Appendix: Implementation of EIS for the Logit Panel
        Model ................................................. 446
   References ................................................. 448

14.Semi-parametric and Non-parametric Methods in Panel Data
   Models ..................................................... 451
      Chunrong Ai and Qi Li

   14.1.Introduction .......................................... 451
   14.2.Linear Panel Data Model ............................... 452
        14.2.1.Additive Effect ................................ 452
        14.2.2.Multiplicative Effect .......................... 460
   14.3.Nonlinear Panel Data Model ............................ 462
        14.3.1.Censored Regression Model ...................... 462
        14.3.2.Discrete Choice Model .......................... 470
        14.3.3.Sample Selection Model ......................... 474
   14.4.Conclusion ............................................ 475
   References ................................................. 476

15.Panel Data Modeling and Inference: A Bayesian Primer ....... 479
      Siddhartha Chib

   15.1.Introduction .......................................... 479
        15.1.1.Hierarchical Prior Modeling .................... 480
        15.1.2.Elements of Markov Chain Monte Carlo ........... 483
        15.1.3.Some Basic Bayesian Updates .................... 486
        15.1.4.Basic Variate Generators ....................... 488
   15.2.Continuous Responses .................................. 489
        15.2.1.Gaussian-Gaussian Model ........................ 490
        15.2.2.Robust Modeling of b1: Student-Student
               and Student-Mixture Models ..................... 492
        15.2.3.Heteroskedasticity ............................. 495
        15.2.4.Serial Correlation ............................. 496
   15.3.Binary Responses ...................................... 497
   15.4.Other Outcome Types ................................... 501
        15.4.1.Censored Outcomes .............................. 501
        15.4.2.Count Responses ................................ 502
        15.4.3.Multinomial Responses .......................... 503
   15.5.Binary Endogenous Regressor ........................... 504
   15.6.Informative Missingness ............................... 507
   15.7.Prediction ............................................ 508
   15.8.Residual Analysis ..................................... 509
   15.9.Model Comparisons ..................................... 509
        15.9.1.Gaussian-Gaussian Model ........................ 512
        15.9.2.Gaussian-Gaussian Tobit model .................. 512
        15.9.3.Panel Poisson Model ............................ 513
   15.10.Conclusion ........................................... 513
   References ................................................. 514

16.To Pool or Not to Pool? .................................... 517
      Badi H. Baltagi, Georges Bresson and Alain Pirotte

   16.1.Introduction .......................................... 517
   16.2.Tests for Poolability, Pretesting and Stein-Rule
        Methods ............................................... 521
        16.2.1.Tests for Poolability .......................... 521
        16.2.2.Pretesting and Stein-Rule Methods .............. 525
        16.2.3.Example ........................................ 526
   16.3.Heterogeneous Estimators .............................. 527
        16.3.1.Averaging Estimators ........................... 529
        16.3.2.Bayesian Framework ............................. 530
        16.3.3.An Example ..................................... 538
   16.4.Comments on the Predictive Approach ................... 541
        16.4.1.From the Post-sample Predictive Density ........ 541
        16.4.2. ... to the Good Forecast Performance of
               the Hierarchical Bayes Estimator: An Example ... 542
   16.5.Conclusion ............................................ 544
   References ................................................. 545

17.Duration Models and Point Processes ........................ 547
      Jean-Pierre Florens, Denis Fougere and Michel
      Mouchart

   17.1.Marginal Duration Models .............................. 548
        17.1.1.Distribution, Survivor and Density Functions ... 548
        17.1.2.Truncated Distributions and Hazard Functions ... 550
   17.2.Conditional Models .................................... 552
        17.2.1.General Considerations ......................... 552
        17.2.2.The Proportional Hazard or Cox Model ........... 555
        17.2.3.The Accelerated Time Model ..................... 557
        17.2.4.Aggregation and Heterogeneity .................. 558
        17.2.5.Endogeneity .................................... 560
   17.3.Competing Risks and Multivariate Duration Models ...... 561
        17.3.1.Multivariate Durations ......................... 561
        17.3.2.Competing Risks Models: Definitions ............ 563
        17.3.3.Identifiability of Competing Risks Models ...... 566
        17.3.4.Right-Censoring ................................ 568
   17.4.Inference in Duration Models .......................... 570
        17.4.1.Introduction ................................... 570
        17.4.2.Parametric Models .............................. 570
        17.4.3.Non-parametric and Semi-parametric Models ...... 576
   17.5.Counting Processes and Point Processes ................ 579
        17.5.1.Definitions .................................... 579
        17.5.2.Stochastic Intensity, Compensator and
               Likelihood of a Counting Process ............... 581
   17.6.Poisson, Markov and Semi-Markov Processes ............. 584
        17.6.1.Poisson Processes .............................. 584
        17.6.2.Markov Processes ............................... 585
        17.6.3.Semi-Markov Processes .......................... 592
   17.7.Statistical Analysis of Counting Processes ............ 594
        17.7.1.The Cox Likelihood ............................. 596
        17.7.2.The Martingale Estimation of the Integrated
               Baseline Intensity ............................. 597
   17.8.Conclusions ........................................... 600
   References ................................................. 600

18.GMM for Panel Data Count Models ............................ 603
      Frank Windmeijer

   18.1.Introduction .......................................... 603
   18.2.GMM in Cross-Sections ................................. 604
   18.3.Panel Data Models ..................................... 606
        18.3.1.Strictly Exogenous Regressors .................. 607
        18.3.2.Predetermined Regressors ....................... 608
        18.3.3.Endogenous Regressors .......................... 609
        18.3.4.Dynamic Models ................................. 610
   18.4.GMM ................................................... 612
   18.5.Applications and Software ............................. 614
   18.6.Finite Sample Inference ............................... 615
        18.6.1.Wald Test and Finite Sample Variance
               Correction ..................................... 615
        18.6.2.Criterion-Based Tests .......................... 617
        18.6.3.Continuous Updating Estimator .................. 618
        18.6.4.Monte Carlo Results ............................ 619
   References ................................................. 623

19.Spatial Panel Econometrics ................................. 625
      Luc Anselin, Julie Le Gallo and Hubert Jayet

   19.1.Introduction .......................................... 625
   19.2.Spatial Effects ....................................... 626
        19.2.1.Spatial Weights and Spatial Lag Operator ....... 628
        19.2.2.Spatial Lag Model .............................. 630
        19.2.3.Spatial Error Model ............................ 632
   19.3.A Taxonomy of Spatial Panel Model Specifications ...... 636
        19.3.1.Temporal Heterogeneity ......................... 637
        19.3.2.Spatial Heterogeneity .......................... 639
        19.3.3.Spatio-Temporal Models ......................... 644
   19.4.Estimation of Spatial Panel Models .................... 648
        19.4.1.Maximum Likelihood Estimation .................. 648
        19.4.2.Instrumental Variables and GMM ................. 652
   19.5.Testing for Spatial Dependence ........................ 654
        19.5.1.Lagrange Multiplier Tests for Spatial Lag
               and Spatial Error Dependence in Pooled
               Models ......................................... 655
        19.5.2.Testing for Spatial Error Correlation
               in Panel Data Models ........................... 655
   19.6.Conclusions ........................................... 656
   References ................................................. 657

Part III Applications

20.Foreign Direct Investment: Lessons from Panel Data ......... 663
      Pierre Blanchard, Carl Gaigne and Claude Mathieu

   20.1.Introduction .......................................... 663
   20.2.A Simple Model of FDI ................................. 664
        20.2.1.Assumptions and Preliminary Results ............ 665
        20.2.2.Technology and Country Characteristics
               as Determinants of FDI ......................... 666
   20.3.Econometric Implementation and Data ................... 668
        20.3.1.A General Econometric Model .................... 669
        20.3.2.FDI and Data Issues ............................ 670
   20.4.Empirical Estimations: Selected Applications .......... 672
        20.4.1.Testing the Trade-Off Between FDI and
               Exports ........................................ 672
        20.4.2.Testing the Role of Trade Policy in FDI ........ 677
        20.4.3.Testing the Relationship Between FDI
               and Exchange Rate .............................. 683
   20.5.Some Recent Econometric Issues ........................ 690
        20.5.1.FDI, Panel Data and Spatial Econometrics ....... 690
        20.5.2.Exchange Rate, Unit Roots and Cointegration .... 691
   References ................................................. 693

21.Stochastic Frontier Analysis and Efficiency Estimation ..... 697
      Christopher Cornwell and Peter Schmidt

   21.1.Measurement of Firm Efficiency ........................ 698
   21.2.Introduction to SFA ................................... 700
        21.2.1.The Basic SFA Empirical Framework .............. 700
        21.2.2.Stochastic vs Deterministic Frontiers .......... 700
        21.2.3.Other Frontier Functions ....................... 702
        21.2.4.SFA with Cross-Section Data .................... 703
   21.3.SFA with Panel Data ................................... 704
        21.3.1.Models with Time-Invariant Inefficiency ........ 704
        21.3.2.Models with Time-Varying Inefficiency .......... 714
   21.4.Applications .......................................... 718
        21.4.1.Egyptian Tile Manufacturers .................... 718
        21.4.2.Indonesian Rice Farmers ........................ 720
   21.5.Concluding Remarks .................................... 723
   References ................................................. 723

22.Econometric Analyses of Linked Employer-Employee Data ...... 727
      John M. Abowd, Francis Kramarz and Simon Woodcock

   22.1.Introduction .......................................... 727
   22.2.A Prototypical Longitudinal Linked Data Set ........... 729
        22.2.1.Missing Data ................................... 730
        22.2.2.Sampling from Linked Data ...................... 732
   22.3.Linear Statistical Models with Person and Firm
        Effects ............................................... 733
        22.3.1.A General Specification ........................ 733
        22.3.2.The Pure Person and Firm Effects
               Specification .................................. 734
   22.4.Definition of Effects of Interest ..................... 735
        22.4.1.Person Effects and Unobservable Personal
               Heterogeneity .................................. 735
        22.4.2.Firm Effects and Unobservable Firm
               Heterogeneity .................................. 736
        22.4.3.Firm-Average Person Effect ..................... 737
        22.4.4.Person-Average Firm Effect ..................... 737
        22.4.5.Industry Effects ............................... 738
        22.4.6.Other Firm Characteristic Effects .............. 739
        22.4.7.Occupation Effects and Other Person ×
               Firm Interactions .............................. 739
   22.5.Estimation by Fixed Effects Methods ................... 739
        22.5.1.Estimation of the Fixed Effects Model
               by Direct Least Squares ........................ 739
        22.5.2.Consistent Methods for β and γ (The Firm-
               Specific Returns to Seniority) ................. 743
   22.6.The Mixed Model ....................................... 744
        22.6.1.REML Estimation of the Mixed Model ............. 746
        22.6.2.Estimating the Fixed Effects and Realized
               Random Effects ................................. 747
        22.6.3.Mixed Models and Correlated Random Effects
               Models ......................................... 748
   22.7.Models of Heterogeneity Biases in Incomplete Models ... 750
        22.7.1.Omission of the Firm Effects ................... 750
        22.7.2.Omission of the Person Effects ................. 751
        22.7.3.Inter-industry Wage Differentials .............. 752
   22.8.Endogenous Mobility ................................... 753
        22.8.1.A Generalized Linear Mixed Model ............... 754
        22.8.2.A Model of Wages, Endogenous Mobility and
               Participation with Person and Firm Effects ..... 755
        22.8.3.Stochastic Assumptions ......................... 756
   22.9.Conclusion ............................................ 758
   References ................................................. 758

23.Life Cycle Labor Supply and Panel Data: A Survey ........... 761
      Bertrand Koebel, Francois Laisney, Winfried Pohlmeier
      and Matthias Staat

   23.1.Introduction .......................................... 761
   23.2.The Basic Model of Life Cycle Labor Supply ............ 762
        23.2.1.The Framework .................................. 763
        23.2.2.First Specifications of the Utility Function ... 765
   23.3.Taking Account of Uncertainty and Risk ................ 768
        23.3.1.First Developments ............................. 768
        23.3.2.Recent Contributions ........................... 770
        23.3.3.Empirical Results .............................. 773
        23.3.3.Empirical Results .............................. 773
   23.4.Voluntary and Involuntary Non-participation ........... 774
        23.4.1.Accounting for the Participation Decision ...... 775
        23.4.2.Unemployment ................................... 778
   23.5.Alternative Parameterization and Implications ......... 779
   23.6.Relaxing Separability Assumptions ..................... 783
        23.6.1.Relaxing Within-Period Additive Separability ... 783
        23.6.2.Relaxing Intertemporal Separability in
               Preferences .................................... 784
   23.7.Conclusion ............................................ 790
   References ................................................. 791

24.Dynamic Policy Analysis .................................... 795
      Jaap H. Abbring and James J. Heckman

   24.1.Introduction .......................................... 795
   24.2.Policy Evaluation and Treatment Effects ............... 796
        24.2.1.The Evaluation Problem ......................... 796
        24.2.2.The Treatment Effect Approach .................. 800
        24.2.3.Dynamic Policy Evaluation ...................... 801
   24.3.Dynamic Treatment Effects and Sequential
        Randomization ......................................... 803
        24.3.1.Dynamic Treatment Effects ...................... 803
        24.3.2.Policy Evaluation and Dynamic Discrete-
               Choice Analysis ................................ 810
        24.3.3.The Information Structure of Policies .......... 813
        24.3.4.Selection on Unobservables ..................... 815
   24.4.The Event-History Approach to Policy Analysis ......... 816
        24.4.1.Treatment Effects in Duration Models ........... 817
        24.4.2.Treatment Effects in More General Event-
               History Models ................................. 823
   24.4.3.A Structural Perspective ............................ 828
   24.5.Dynamic Discrete Choice and Dynamic Treatment
        Effects ............................................... 829
        24.5.1.Semi-parametric Duration Models and
               Counterfactuals ................................ 831
        24.5.2.A Sequential Structural Model with Option
               Values ......................................... 844
        24.5.3.Identification at Infinity ..................... 850
        24.5.4.Comparing Reduced-Form and Structural Models ... 851
        24.5.5.A Short Survey of Dynamic Discrete-Choice
               Models ......................................... 853
   24.6.Conclusion ............................................ 857
   References ................................................. 857

25.Econometrics of Individual Labor Market Transitions ........ 865
      Denis Fougere and Thierry Kamionka

   25.1.Introduction .......................................... 865
   25.2.Multi-spell Multi-state Models ........................ 867
        25.2.1.General framework .............................. 867
        25.2.2.Non-parametric and Parametric Estimation ....... 872
        25.2.3.Unobserved Heterogeneity ....................... 878
   25.3.Markov Processes Using Discrete-Time Observations ..... 882
        25.3.1.The Time-Homogeneous Markovian Model ........... 883
        25.3.2.The Mover-Stayer Model ......................... 893
   25.4.Concluding Remarks .................................... 901
   References ................................................. 902

26.Software Review ............................................ 907
      Pierre Blanchard

   26.1.Introduction .......................................... 907
   26.2.General-Purpose Econometric Packages .................. 908
        26.2.1.EViews (v.5.1) ................................. 908
        26.2.2.LIMDEP (v.8) with NLOGIT (v.3) ................. 912
        26.2.3.RATS (v.6) ..................................... 916
        26.2.4.SAS (v.9.1) .................................... 920
        26.2.5.Stata (v.9) .................................... 923
        26.2.6.TSP (v.5) ...................................... 927
   26.3.High-Level Matrix Programming Languages ............... 930
        26.3.1.GAUSS (v.5) .................................... 930
        26.3.2.Ox (v.3.4) ..................................... 936
   26.4.Performance Hints and Numerical Accuracy
        Evaluation ............................................ 941
        26.4.1.Speed Comparison ............................... 941
        26.4.2.Numerical Accuracy Evaluations ................. 944
   References ................................................. 949


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:20:00 2019. Размер: 44,170 bytes.
Посещение N 2341 c 04.08.2009